Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2206292119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122222

RESUMO

Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA-protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)-for which RNA-protein interactions can be controlled by varying the ionic strength of the buffer. We find that when RNA-protein interactions are weak, BMV assembles by a nucleation-and-growth pathway in which a small cluster of RNA-bound proteins must exceed a critical size before additional proteins can bind. As the strength of RNA-protein interactions increases, the nucleation time becomes shorter and more narrowly distributed, but the time to grow a capsid after nucleation is largely unaffected. These results suggest that the nucleation rate is controlled by RNA-protein interactions, while the growth process is driven less by RNA-protein interactions and more by protein-protein interactions and intraprotein forces. The nucleated pathway observed with the plant virus BMV is strikingly similar to that previously observed with bacteriophage MS2, a phylogenetically distinct virus with a different host kingdom. These results raise the possibility that nucleated assembly pathways might be common to other RNA viruses.


Assuntos
Bromovirus , Vírus de RNA , Bromovirus/genética , Bromovirus/metabolismo , Capsídeo/metabolismo , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Vírion/genética , Vírion/metabolismo
2.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709860

RESUMO

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Assuntos
Proteínas do Capsídeo , RNA Mensageiro , Vírus do Mosaico do Tabaco , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Vírus do Mosaico do Tabaco/genética , Proteínas do Capsídeo/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Feminino , Vacinas contra COVID-19/administração & dosagem , Vírion/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Lipossomos
3.
Biophys J ; 122(17): 3469-3475, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37501368

RESUMO

In the presence of polyvalent cations, long double-stranded DNA (dsDNA) in dilute solution undergoes a single-molecule, first-order, phase transition ("condensation"), a phenomenon that has been documented and analyzed by many years of experimental and theoretical studies. There has been no systematic effort, however, to determine whether long single-stranded RNA (ssRNA) shows an analogous behavior. In this study, using dynamic light scattering, analytical ultracentrifugation, and gel electrophoresis, we examine the effects of increasing polyvalent cation concentrations on the effective size of long ssRNAs ranging from 3000 to 12,000 nucleotides. Our results indicate that ssRNA does not undergo a discontinuous condensation as does dsDNA but rather a "continuous" decrease in size with increasing polyvalent cation concentration. And, instead of the 10-fold decrease in size shown by long dsDNA, we document a 50% decrease, as demonstrated for a range of lengths and sequences of ssRNA.


Assuntos
DNA , RNA , RNA/genética , Cátions
4.
J Virol ; 96(7): e0185821, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293773

RESUMO

Self-amplifying (sa) RNA molecules-"replicons"-derived from the genomes of positive-sense RNA viruses are receiving increasing attention as gene and vaccine delivery vehicles. This is because mRNA forms of genes of interest can be incorporated into them and strongly amplified, thereby enhancing target protein expression. In this report, we demonstrate a nonmonotonic dependence of protein expression on the mass of transfected replicon, in contrast to the usual, monotonic case of non-saRNA transfections. We lipotransfected a variety of cell lines with increasing masses of enhanced yellow fluorescent protein (eYFP) as a reporter gene in sa form and found that there is a "sweet spot" at which protein expression and cell viability are optimum. To control the varying mass of transfected replicon RNA for a given mass of Lipofectamine, the replicons were mixed with a "carrier" RNA that is neither replicated nor translated; the total mass of transfected RNA was kept constant while increasing the fraction of the replicon from zero to one. Fluorescence microscopy studies showed that the optimum protein expression and cell viability are achieved for replicon fractions as small as 1/10 of the total transfected RNA, and these results were quantified by a systematic series of flow cytometry measurements. IMPORTANCE Positive-sense RNA viruses often have a cytotoxic effect on their host cell because of the strength of their RNA replicase proteins, even though only one copy of their genome begins the viral life cycle in each cell. Noninfectious forms of them-replicons-which include just their RNA replication-related genes, are also strongly self-amplifying and cytotoxic. Accordingly, when replicons fused with nonviral genes of interest are transfected into cells to amplify expression of proteins of interest, one needs to keep the replicon "dose" sufficiently low. We demonstrate how to control the number of RNA replicons getting into transfected cells and that there is a sweet spot for the replicon dose that optimizes protein expression and cell viability. Examples are given for the case of Nodamura viral replicons with fluorescent protein reporter genes in a variety of mammalian cell lines, quantified by flow cytometry and live/dead cell assays.


Assuntos
Biossíntese de Proteínas , RNA , Replicon , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Genes Reporter/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mamíferos/genética , Biossíntese de Proteínas/genética , RNA/genética , RNA Viral/genética , Replicon/genética , Transfecção
5.
Proc Natl Acad Sci U S A ; 117(20): 10673-10680, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358197

RESUMO

We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content-specifically, RNAs 3 and 4-assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qß for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific "packaging signals" throughout the viral RNA to package their monopartite genomes.


Assuntos
Bacteriófagos/genética , Proteínas do Capsídeo/metabolismo , Genoma Viral , RNA Viral/metabolismo , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Bromovirus/genética , Bromovirus/metabolismo , Bromovirus/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , RNA Viral/genética
6.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108688

RESUMO

White spot syndrome virus (WSSV) is a very large dsDNA virus. The accepted shape of the WSSV virion has been as ellipsoidal, with a tail-like extension. However, due to the scarcity of reliable references, the pathogenesis and morphogenesis of WSSV are not well understood. Here, we used transmission electron microscopy (TEM) and cryogenic electron microscopy (Cryo-EM) to address some knowledge gaps. We concluded that mature WSSV virions with a stout oval-like shape do not have tail-like extensions. Furthermore, there were two distinct ends in WSSV nucleocapsids: a portal cap and a closed base. A C14 symmetric structure of the WSSV nucleocapsid was also proposed, according to our Cryo-EM map. Immunoelectron microscopy (IEM) revealed that VP664 proteins, the main components of the 14 assembly units, form a ring-like architecture. Moreover, WSSV nucleocapsids were also observed to undergo unique helical dissociation. Based on these new results, we propose a novel morphogenetic pathway of WSSV.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Vírion/metabolismo , Microscopia Eletrônica , Microscopia Imunoeletrônica
7.
Nucleic Acids Res ; 47(3): 1440-1450, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30590739

RESUMO

Previous works have reported significant effects of macromolecular crowding on the structure and behavior of biomolecules. The crowded intracellular environment, in contrast to in vitro buffer solutions, likely imparts similar effects on biomolecules. The enzyme serving as the gatekeeper for the genome, RNA polymerase (RNAP), is among the most regulated enzymes. Although it was previously demonstrated that macromolecular crowding affects association of RNAP to DNA, not much is known about how crowding acts on late initiation and promoter clearance steps, which are considered to be the rate-determining steps for many promoters. Here, we demonstrate that macromolecular crowding enhances the rate of late initiation and promoter clearance using in vitro quenching-based single-molecule kinetics assays. Moreover, the enhancement's dependence on crowder size notably deviates from predictions by the scaled-particle theory, commonly used for description of crowding effects. Our findings shed new light on how enzymatic reactions could be affected by crowded conditions in the cellular milieu.


Assuntos
Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Citoplasma/enzimologia , Citoplasma/genética , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano/genética , Cinética , Substâncias Macromoleculares/química , Regiões Promotoras Genéticas , Termodinâmica
8.
Biophys J ; 117(7): 1331-1341, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514968

RESUMO

Unlike double-stranded DNA, single-stranded RNA can be spontaneously packaged into spherical capsids by viral capsid protein (CP) because it is a more compact and flexible polymer. Many systematic investigations of this self-assembly process have been carried out using CP from cowpea chlorotic mottle virus, with a wide range of sequences and lengths of single-stranded RNA. Among these studies are measurements of the relative packaging efficiencies of these RNAs into spherical capsids. In this work, we address a fundamental issue that has received very little attention, namely the question of the preferred curvature of the capsid formed around different RNA molecules. We show in particular that homopolymers of RNA-polyribouridylic acid and polyriboadenylic acid-form exclusively T = 2-sized (∼22-nm diameter) virus-like particles (VLPs) when mixed with cowpea chlorotic mottle virus CP, independent of their length, ranging from 500 to more than 4000 nucleotides. This is in contrast to "normal-composition" RNAs (i.e., molecules with comparable numbers of each of the four nucleotides and hence capable of developing a large amount of secondary structure because of intramolecular complementarity/basepairing); a curvature corresponding to T = 3-size (∼28 nm in diameter) is preferred for the VLPs formed with such RNAs. Our work is consistent with the preferred curvature of VLPs being a consequence of interaction of CP with RNA-in particular, the presence or absence of short RNA duplexes-and suggests that the equilibrium size of the capsid results from a trade-off between this optimum size and the cost of confinement.


Assuntos
Bromovirus/química , RNA/química , Concentração de Íons de Hidrogênio , Poli A/química , Poli A/metabolismo , Poli U/química , Poli U/metabolismo , Polimerização , RNA/metabolismo
9.
Biophys J ; 113(2): 339-347, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28711172

RESUMO

Previous work has shown that purified capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) is capable of packaging both purified single-stranded RNA molecules of normal composition (comparable numbers of A, U, G, and C nucleobases) and of varying length and sequence, and anionic synthetic polymers such as polystyrene sulfonate. We find that CCMV CP is also capable of packaging polyU RNAs, which-unlike normal-composition RNAs-do not form secondary structures and which act as essentially structureless linear polymers. Following our canonical two-step assembly protocol, polyU RNAs ranging in length from 1000 to 9000 nucleotides (nt) are completely packaged. Surprisingly, negative-stain electron microscopy shows that all lengths of polyU are packaged into 22-nm-diameter particles despite the fact that CCMV CP prefers to form 28-nm-diameter (T = 3) particles when packaging normal-composition RNAs. PolyU RNAs >5000 nt in length are packaged into multiplet capsids, in which a single RNA molecule is shared between two or more 22-nm-diameter capsids, in analogy with the multiplets of 28-nm-diameter particles formed with normal-composition RNAs >5000 nt long. Experiments in which viral RNA competes for viral CP with polyUs of equal length show that polyU, despite its lack of secondary structure, is packaged more efficiently than viral RNA. These findings illustrate that the secondary structure of the RNA molecule-and its absence-plays an essential role in determining capsid structure during the self-assembly of CCMV-like particles.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Conformação de Ácido Nucleico , RNA Viral , Montagem de Vírus , Bromovirus/química , Bromovirus/genética , Bromovirus/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia Eletrônica de Transmissão , RNA Viral/química
10.
RNA ; 21(5): 877-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752599

RESUMO

The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures.


Assuntos
Genoma Viral , Conformação de Ácido Nucleico , RNA Viral/química , Vírus Satélite do Mosaico do Tabaco/genética , Algoritmos , Biologia Computacional/métodos , Microscopia Crioeletrônica , Conformação Molecular
11.
Acc Chem Res ; 49(1): 48-55, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26653769

RESUMO

Viruses are unique among living organisms insofar as they can be reconstituted "from scratch", that is, synthesized from purified components. In the simplest cases, their "parts list" numbers only two: a single molecule of nucleic acid and many (but a very special number, i.e., multiples of 60) copies of a single protein. Indeed, the smallest viral genomes include essentially only two genes, on the order of a thousand times fewer than the next-simplest organisms like bacteria and yeast. For these reasons, it is possible and even fruitful to take a reductionist approach to viruses and to understand how they work in terms of fundamental physical principles. In this Account, we discuss our recent physical chemistry approach to studying the self-assembly of a particular spherical virus (cowpea chlorotic mottle virus) whose reconstitution from RNA and capsid protein has long served as a model for virus assembly. While previous studies have clarified the roles of certain physical (electrostatic, hydrophobic, steric) interactions in the stability and structure of the final virus, it has been difficult to probe these interactions during assembly because of the inherently short lifetimes of the intermediate states. We feature the role of pH in tuning the magnitude of the interactions among capsid proteins during assembly: in particular, by making the interactions between proteins sufficiently weak, we are able to stall the assembly process and interrogate the structure and composition of particular on-pathway intermediates. Further, we find that the strength of the lateral attractions between RNA-bound proteins plays a key role in addressing several outstanding questions about assembly: What determines the pathway or pathways of assembly? What is the importance of kinetic traps and hysteresis? How do viruses copackage multiple short (compared with wild-type) RNAs or single long RNAs? What determines the relative packaging efficiencies of different RNAs when they are forced to compete for an insufficient supply of protein? And what is the limit on the length of RNA that can be packaged by CCMV capsid protein?


Assuntos
Bromovirus/química , Proteínas do Capsídeo/química , Concentração de Íons de Hidrogênio , RNA Viral/química
12.
Nucleic Acids Res ; 43(Database issue): D690-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398896

RESUMO

Release 6, the latest reference genome assembly of the fruit fly Drosophila melanogaster, was released by the Berkeley Drosophila Genome Project in 2014; it replaces their previous Release 5 genome assembly, which had been the reference genome assembly for over 7 years. With the enormous amount of information now attached to the D. melanogaster genome in public repositories and individual laboratories, the replacement of the previous assembly by the new one is a major event requiring careful migration of annotations and genome-anchored data to the new, improved assembly. In this report, we describe the attributes of the new Release 6 reference genome assembly, the migration of FlyBase genome annotations to this new assembly, how genome features on this new assembly can be viewed in FlyBase (http://flybase.org) and how users can convert coordinates for their own data to the corresponding Release 6 coordinates.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster/genética , Genoma de Inseto , Anotação de Sequência Molecular , Animais , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Modelos Genéticos , Dados de Sequência Molecular , Padrões de Referência , Alinhamento de Sequência , Software
13.
Biophys J ; 111(10): 2077-2085, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851933

RESUMO

Long RNA molecules are at the core of gene regulation across all kingdoms of life, while also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with nonrepeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers. To test whether a branched polymer model can estimate the overall sizes of large RNAs, we employed fluorescence correlation spectroscopy to examine the hydrodynamic radii of a broad spectrum of biologically important RNAs, ranging from viral genomes to long noncoding regulatory RNAs. The relative sizes of long RNAs measured at low ionic strength correspond well to those predicted by two theoretical approaches that treat the effective branching associated with secondary structure formation-one employing the Kramers theorem for calculating radii of gyration, and the other featuring the metric of maximum ladder distance. Upon addition of multivalent cations, most RNAs are found to be compacted as compared with their original, low ionic-strength sizes. These results suggest that sizes of long RNA molecules are determined by the branching pattern of their secondary structures. We also experimentally validate the proposed computational approaches for estimating hydrodynamic radii of single-stranded RNAs, which use generic RNA structure prediction tools and thus can be universally applied to a wide range of long RNAs.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Hidrodinâmica , Modelos Moleculares , RNA/genética
14.
J Am Chem Soc ; 137(24): 7584-7, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26043403

RESUMO

Using the components of a particularly well-studied plant virus, cowpea chlorotic mottle virus (CCMV), we demonstrate the synthesis of virus-like particles (VLPs) with one end of the packaged RNA extending out of the capsid and into the surrounding solution. This construct breaks the otherwise perfect symmetry of the capsid and provides a straightforward route for monofunctionalizing VLPs using the principles of DNA nanotechnology. It also allows physical manipulation of the packaged RNA, a previously inaccessible part of the viral architecture. Our synthesis does not involve covalent chemistry of any kind; rather, we trigger capsid assembly on a scaffold of viral RNA that is hybridized at one end to a complementary DNA strand. Interaction of CCMV capsid protein with this RNA-DNA template leads to selective packaging of the RNA portion into a well-formed capsid but leaves the hybridized portion poking out of the capsid through a small hole. We show that the nucleic acid protruding from the capsid is capable of binding free DNA strands and DNA-functionalized colloidal particles. Separately, we show that the RNA-DNA scaffold can be used to nucleate virus formation on a DNA-functionalized surface. We believe this self-assembly strategy can be adapted to viruses other than CCMV.


Assuntos
Bromovirus/química , DNA Complementar/química , Nanopartículas/química , Nanotecnologia , RNA Viral/química , Vírion/química , Capsídeo/química , Ouro/química , Modelos Moleculares , Nanopartículas/ultraestrutura , Nanotecnologia/métodos
15.
J Virol ; 88(18): 10472-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965458

RESUMO

UNLABELLED: We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318-3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of all of the RNA in solution requires sufficient CP to provide charge matching of the N-terminal positively charged arginine-rich motifs (ARMS) of the CPs with the negatively charged phosphate backbone of the RNA. We show here that packaging results from the initial formation of a charge-matched protocapsid consisting of RNA decorated by a disordered arrangement of CPs. This protocapsid reorganizes into the final, icosahedrally symmetric nucleocapsid by displacing the excess CPs from the RNA to the exterior surface of the emerging capsid through electrostatic attraction between the ARMs of the excess CP and the negative charge density of the capsid exterior. As a test of this scenario, we prepare CP mutants with extra and missing (relative to the wild type) cationic residues and show that a correspondingly smaller and larger excess, respectively, of CP is needed for complete packaging of RNA. IMPORTANCE: Cowpea chlorotic mottle virus (CCMV) has long been studied as a model system for the assembly of single-stranded RNA viruses. While much is known about the electrostatic interactions within the CCMV virion, relatively little is known about these interactions during assembly, i.e., within intermediate states preceding the final nucleocapsid structure. Theoretical models and coarse-grained molecular dynamics simulations suggest that viruses like CCMV assemble by the bulk adsorption of CPs onto the RNA driven by electrostatic attraction, followed by structural reorganization into the final capsid. Such a mechanism facilitates assembly by condensing the RNA for packaging while simultaneously concentrating the local density of CP for capsid nucleation. We provide experimental evidence of such a mechanism by demonstrating that efficient assembly is initiated by the formation of a disordered protocapsid complex whose stoichiometry is governed by electrostatics (charge matching of the anionic RNA and the cationic N termini of the CP).


Assuntos
Bromovirus/química , Bromovirus/fisiologia , Montagem de Vírus , Bromovirus/genética , Bromovirus/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Fabaceae/virologia , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura
18.
RNA ; 18(2): 284-99, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190747

RESUMO

Single-stranded RNAs (ssRNAs) longer than a few hundred nucleotides do not have a unique structure in solution. Their equilibrium properties therefore reflect the average of an ensemble of structures. We use cryo-electron microscopy to image projections of individual long ssRNA molecules and characterize the anisotropy of their ensembles in solution. A flattened prolate volume is found to best represent the shapes of these ensembles. The measured sizes and anisotropies are in good agreement with complementary determinations using small-angle X-ray scattering and coarse-grained molecular dynamics simulations. A long viral ssRNA is compared with shorter noncoding transcripts to demonstrate that prolate geometry and flatness are generic properties independent of sequence length and origin. The anisotropy persists under physiological as well as low-ionic-strength conditions, revealing a direct correlation between secondary structure asymmetry and 3D shape and size. We discuss the physical origin of the generic anisotropy and its biological implications.


Assuntos
RNA/química , Anisotropia , Microscopia Crioeletrônica/métodos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Soluções/química , Raios X
19.
J Virol ; 86(22): 12271-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22951822

RESUMO

While most T=3 single-stranded RNA (ssRNA) viruses package in vivo about 3,000 nucleotides (nt), in vitro experiments have demonstrated that a broad range of RNA lengths can be packaged. Under the right solution conditions, for example, cowpea chlorotic mottle virus (CCMV) capsid protein (CP) has been shown to package RNA molecules whose lengths range from 100 to 10,000 nt. Furthermore, in each case it can package the RNA completely, as long as the mass ratio of CP to nucleic acid in the assembly mixture is 6:1 or higher. Yet the packaging efficiencies of the RNAs can differ widely, as we demonstrate by measurements in which two RNAs compete head-to-head for a limited amount of CP. We show that the relative efficiency depends nonmonotonically on the RNA length, with 3,200 nt being optimum for packaging by the T=3 capsids preferred by CCMV CP. When two RNAs of the same length-and hence the same charge-compete for CP, differences in packaging efficiency are necessarily due to differences in their secondary structures and/or three-dimensional (3D) sizes. For example, the heterologous RNA1 of brome mosaic virus (BMV) is packaged three times more efficiently by CCMV CP than is RNA1 of CCMV, even though the two RNAs have virtually identical lengths. Finally, we show that in an assembly mixture at neutral pH, CP binds reversibly to the RNA and there is a reversible equilibrium between all the various RNA/CP complexes. At acidic pH, excess protein unbinds from RNA/CP complexes and nucleocapsids form irreversibly.


Assuntos
Bromovirus/genética , Capsídeo/química , RNA/metabolismo , Ligação Competitiva , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Microscopia Eletrônica de Transmissão/métodos , Modelos Genéticos , Ligação Proteica , Ribonucleases/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Virais , Vírion/genética , Montagem de Vírus
20.
J Virol ; 86(6): 3318-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205731

RESUMO

Virus-like particles can be formed by self-assembly of capsid protein (CP) with RNA molecules of increasing length. If the protein "insisted" on a single radius of curvature, the capsids would be identical in size, independent of RNA length. However, there would be a limit to length of the RNA, and one would not expect RNA much shorter than native viral RNA to be packaged unless multiple copies were packaged. On the other hand, if the protein did not favor predetermined capsid size, one would expect the capsid diameter to increase with increase in RNA length. Here we examine the self-assembly of CP from cowpea chlorotic mottle virus with RNA molecules ranging in length from 140 to 12,000 nucleotides (nt). Each of these RNAs is completely packaged if and only if the protein/RNA mass ratio is sufficiently high; this critical value is the same for all of the RNAs and corresponds to equal RNA and N-terminal-protein charges in the assembly mix. For RNAs much shorter in length than the 3,000 nt of the viral RNA, two or more molecules are assembled into 24- and 26-nm-diameter capsids, whereas for much longer RNAs (>4,500 nt), a single RNA molecule is shared/packaged by two or more capsids with diameters as large as 30 nm. For intermediate lengths, a single RNA is assembled into 26-nm-diameter capsids, the size associated with T=3 wild-type virus. The significance of these assembly results is discussed in relation to likely factors that maintain T=3 symmetry in vivo.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , RNA Viral/metabolismo , Montagem de Vírus , Bromovirus/química , Bromovirus/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Fabaceae/virologia , Doenças das Plantas/virologia , RNA Viral/química , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA