Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
EMBO J ; 43(19): 4228-4247, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160274

RESUMO

Splicing and endoplasmic reticulum (ER)-proteostasis are two key processes that ultimately regulate the functional proteins that are produced by a cell. However, the extent to which these processes interact remains poorly understood. Here, we identify SNRPB and other components of the Sm-ring, as targets of the unfolded protein response and novel regulators of export from the ER. Mechanistically, The Sm-ring regulates the splicing of components of the ER export machinery, including Sec16A, a component of ER exit sites. Loss of function of SNRPB is causally linked to cerebro-costo-mandibular syndrome (CCMS), a genetic disease characterized by bone defects. We show that heterozygous deletion of SNRPB in mice resulted in bone defects reminiscent of CCMS and that knockdown of SNRPB delays the trafficking of type-I collagen. Silencing SNRPB inhibited osteogenesis in vitro, which could be rescued by overexpression of Sec16A. This rescue indicates that the role of SNRPB in osteogenesis is linked to its effects on ER-export. Finally, we show that SNRPB is a target for the unfolded protein response, which supports a mechanistic link between the spliceosome and ER-proteostasis. Our work highlights components of the Sm-ring as a novel node in the proteostasis network, shedding light on CCMS pathophysiology.


Assuntos
Desenvolvimento Ósseo , Retículo Endoplasmático , Splicing de RNA , Resposta a Proteínas não Dobradas , Animais , Camundongos , Retículo Endoplasmático/metabolismo , Humanos , Desenvolvimento Ósseo/genética , Camundongos Knockout , Osteogênese/genética
2.
Am J Hum Genet ; 111(7): 1383-1404, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38908375

RESUMO

The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas , Síndrome de Prader-Willi , Humanos , Cromossomos Humanos Par 15/genética , Citoplasma/metabolismo , Células HEK293 , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Prader-Willi/genética , Proteínas/genética , Proteínas/metabolismo , RNA Nucleolar Pequeno/genética
3.
Traffic ; 25(4): e12934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613404

RESUMO

Alzheimer's disease (AD) pathology is characterized by amyloid beta (Aß) plaques and dysfunctional autophagy. Aß is generated by sequential proteolytic cleavage of amyloid precursor protein (APP), and the site of intracellular APP processing is highly debated, which may include autophagosomes. Here, we investigated the involvement of autophagy, including the role of ATG9 in APP intracellular trafficking and processing by applying the RUSH system, which allows studying the transport of fluorescently labeled mCherry-APP-EGFP in a systematic way, starting from the endoplasmic reticulum. HeLa cells, expressing the RUSH mCherry-APP-EGFP system, were investigated by live cell imaging, immunofluorescence, and Western blot. We found that mCherry-APP-EGFP passed through the Golgi faster in ATG9 knockout cells. Furthermore, ATG9 deletion shifted mCherry-APP-EGFP from early endosomes and lysosomes toward the plasma membrane concomitant with reduced endocytosis. Importantly, this alteration in mCherry-APP-EGFP transport resulted in increased secreted mCherry-soluble APP and C-terminal fragment-EGFP. These effects were also phenocopied by pharmacological inhibition of ULK1, indicating that autophagy is regulating the intracellular trafficking and processing of APP. These findings contribute to the understanding of the role of autophagy in APP metabolism and could potentially have implications for new therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Peptídeos beta-Amiloides , Células HeLa , Transporte Biológico , Autofagia
4.
EMBO J ; 41(18): e110596, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938214

RESUMO

Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.


Assuntos
Mecanotransdução Celular , Proteínas Monoméricas de Ligação ao GTP , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transporte Proteico/fisiologia
5.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806674

RESUMO

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteína 11 Semelhante a Bcl-2 , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogênicas c-bcl-2 , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Camundongos , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Mitose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Medula Óssea/patologia , Medula Óssea/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor
6.
Genes Dev ; 31(1): 34-45, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130345

RESUMO

Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.


Assuntos
Centrossomo/fisiologia , Genes p53/genética , Complexos Multiproteicos/metabolismo , Ativação Transcricional/genética , Células A549 , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Centrossomo/patologia , Citocinese/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Fígado/citologia , Fígado/embriologia , Camundongos , Organogênese/genética
7.
EMBO J ; 39(23): e105432, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073400

RESUMO

Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.


Assuntos
Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos , Humanos , Metáfase/fisiologia , Mitose , Fuso Acromático/fisiologia
8.
Development ; 148(4)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33531430

RESUMO

Hedgehog (Hh) ligands act as morphogens to direct patterning and proliferation during embryonic development. Protein kinase A (PKA) is a central negative regulator of Hh signalling, and in the absence of Hh ligands, PKA activity prevents inappropriate expression of Hh target genes. The orphan G-protein-coupled receptor Gpr161 contributes to the basal Hh repression machinery by activating PKA. Gpr161 acts as an A-kinase-anchoring protein, and is itself phosphorylated by PKA, but the functional significance of PKA phosphorylation of Gpr161 in the context of Hh signalling remains unknown. Here, we show that loss of Gpr161 in zebrafish leads to constitutive activation of medium and low, but not maximal, levels of Hh target gene expression. Furthermore, we find that PKA phosphorylation-deficient forms of Gpr161, which we show directly couple to Gαs, display an increased sensitivity to Shh, resulting in excess high-level Hh signalling. Our results suggest that PKA feedback-mediated phosphorylation of Gpr161 may provide a mechanism for fine-tuning Gpr161 ciliary localisation and PKA activity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Peixe-Zebra/fisiologia , Animais , Evolução Biológica , Cílios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Desenvolvimento Embrionário/genética , Proteínas Hedgehog/genética , Mutação , Fenótipo , Receptores Acoplados a Proteínas G/genética
9.
J Lipid Res ; 63(6): 100222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537527

RESUMO

Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.


Assuntos
Éter , Lipidômica , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Diferenciação Celular , Éter/metabolismo , Éteres , Metabolismo dos Lipídeos/genética , Camundongos , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
10.
J Inherit Metab Dis ; 45(1): 38-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494285

RESUMO

Deficiency of the transacylase tafazzin due to loss of function variants in the X-chromosomal TAFAZZIN gene causes Barth syndrome (BTHS) with severe neonatal or infantile cardiomyopathy, neutropenia, myopathy, and short stature. The condition is characterized by drastic changes in the composition of cardiolipins, a mitochondria-specific class of phospholipids. Studies examining the impact of tafazzin deficiency on the metabolism of other phospholipids have so far generated inhomogeneous and partly conflicting results. Recent studies showed that the cardiolipin composition in cells and different murine tissues is highly dependent on the surrounding lipid environment. In order to study the relevance of different lipid states and tafazzin function for cardiolipin and phospholipid homeostasis we conducted systematic modulation experiments in a CRISPR/Cas9 knock-out model for BTHS. We found that-irrespective of tafazzin function-the composition of cardiolipins strongly depends on the nutritionally available lipid pool. Tafazzin deficiency causes a consistent shift towards cardiolipin species with more saturated and shorter acyl chains. Interestingly, the typical biochemical BTHS phenotype in phospholipid profiles of HEK 293T TAZ knock-out cells strongly depends on the cellular lipid context. In response to altered nutritional lipid compositions, we measured more pronounced changes on phospholipids that were largely masked under standard cell culturing conditions, therewith giving a possible explanation for the conflicting results reported so far on BTHS lipid phenotypes.


Assuntos
Aciltransferases/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Fosfolipídeos/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/patologia , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Mutação
11.
Traffic ; 20(9): 674-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314175

RESUMO

Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia , Células HEK293 , Células HeLa , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo
12.
Nucleic Acids Res ; 47(20): 10754-10770, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535131

RESUMO

Centromeres are specialized chromosomal regions epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A is required for kinetochore formation which is essential for chromosome segregation during mitosis. Spatial restriction of CENP-A to the centromere is tightly controlled. Its overexpression results in ectopic incorporation and the formation of potentially deleterious neocentromeres in yeast, flies and in various human cancers. While the contribution of posttranslational modifications of CENP-A to these processes has been studied in yeast and mammals to some extent, very little is known about Drosophila melanogaster. Here, we show that CENP-A is phosphorylated at serine 20 (S20) by casein kinase II and that in mitotic cells, the phosphorylated form is enriched on chromatin. Importantly, our results reveal that S20 phosphorylation regulates the turn-over of prenucleosomal CENP-A by the SCFPpa-proteasome pathway and that phosphorylation promotes removal of CENP-A from ectopic but not from centromeric sites in chromatin. We provide multiple lines of evidence for a crucial role of S20 phosphorylation in controlling restricted incorporation of CENP-A into centromeric chromatin in flies. Modulation of the phosphorylation state of S20 may provide the cells with a means to fine-tune CENP-A levels in order to prevent deleterious loading to extra-centromeric sites.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfosserina/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase II/metabolismo , Proteína Centromérica A/química , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas Mutantes/metabolismo , Fosforilação , Ligação Proteica , Proteólise
13.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073107

RESUMO

Inhaled Aspergillus fumigatus spores can be internalized by alveolar type II cells. Cell lines stably expressing fluorescently labeled components of endocytic pathway enable investigations of intracellular organization during conidia internalization and measurement of the process kinetics. The goal of this report was to evaluate the methodological appliance of cell lines for studying fungal conidia internalization. We have generated A549 cell lines stably expressing fluorescently labeled actin (LifeAct-mRuby2) and late endosomal protein (LAMP1-NeonGreen) following an evaluation of cell-pathogen interactions in live and fixed cells. Our data show that the LAMP1-NeonGreen cell line can be used to visualize conidia co-localization with LAMP1 in live and fixed cells. However, caution is necessary when using LifeAct-mRuby2-cell lines as it may affect the conidia internalization dynamics.


Assuntos
Células Epiteliais Alveolares , Aspergilose/microbiologia , Aspergillus fumigatus , Interações Hospedeiro-Patógeno , Células A549 , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/ultraestrutura , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/fisiologia , Aspergillus fumigatus/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Imagem Óptica , Fagocitose , Esporos Fúngicos/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(8): 2431-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675482

RESUMO

Tetrahydrobiopterin is a cofactor synthesized from GTP with well-known roles in enzymatic nitric oxide synthesis and aromatic amino acid hydroxylation. It is used to treat mild forms of phenylketonuria. Less is known about the role of tetrahydrobiopterin in lipid metabolism, although it is essential for irreversible ether lipid cleavage by alkylglycerol monooxygenase. Here we found intracellular alkylglycerol monooxygenase activity to be an important regulator of alkylglycerol metabolism in intact murine RAW264.7 macrophage-like cells. Alkylglycerol monooxygenase was expressed and active also in primary mouse bone marrow-derived monocytes and "alternatively activated" M2 macrophages obtained by interleukin 4 treatment, but almost missing in M1 macrophages obtained by IFN-γ and lipopolysaccharide treatment. The cellular lipidome of RAW264.7 was markedly changed in a parallel way by modulation of alkylglycerol monooxygenase expression and of tetrahydrobiopterin biosynthesis affecting not only various ether lipid species upstream of alkylglycerol monooxygenase but also other more complex lipids including glycosylated ceramides and cardiolipins, which have no direct connection to ether lipid pathways. Alkylglycerol monooxygenase activity manipulation modulated the IFN-γ/lipopolysaccharide-induced expression of inducible nitric oxide synthase, interleukin-1ß, and interleukin 1 receptor antagonist but not transforming growth factor ß1, suggesting that alkylglycerol monooxygenase activity affects IFN-γ/lipopolysaccharide signaling. Our results demonstrate a central role of tetrahydrobiopterin and alkylglycerol monooxygenase in ether lipid metabolism of murine macrophages and reveal that alteration of alkylglycerol monooxygenase activity has a profound impact on the lipidome also beyond the class of ether lipids.


Assuntos
Biopterinas/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Biopterinas/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Análise por Conglomerados , GTP Cicloidrolase/metabolismo , Técnicas de Silenciamento de Genes , Interferon gama/farmacologia , Lentivirus/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo
15.
Cell Microbiol ; 18(10): 1374-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26866925

RESUMO

Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.


Assuntos
Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Infecções por Salmonella/enzimologia , Salmonella typhimurium/imunologia , Animais , Indução Enzimática , Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Inata , Ferro/metabolismo , Camundongos , Viabilidade Microbiana , NF-kappa B/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/microbiologia
16.
Traffic ; 15(1): 22-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24138727

RESUMO

Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by loss of apical microvilli and formation of cytoplasmic inclusions lined by microvilli in enterocytes. MVID is caused by mutations in the MYO5B gene, coding for the myosin Vb motor protein. Although myosin Vb is implicated in the organization of intracellular transport and cell surface polarity in epithelial cells, its precise role in the pathogenesis of MVID is unknown. We performed correlative immunohistochemistry analyses of sections from duodenal biopsies of a MVID patient, compound heterozygous for two novel MYO5B mutations, predicting loss of function of myosin Vb in duodenal enterocytes together with a stable MYO5B CaCo2 RNAi cell system. Our findings show that myosin Vb-deficient enterocytes display disruption of cell polarity as reflected by mislocalized apical and basolateral transporter proteins, altered distribution of certain endosomal/lysosomal constituents including Rab GTPases. Together, this severe disturbance of epithelial cell function could shed light on the pathology and symptoms of MVID.


Assuntos
Polaridade Celular , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Linhagem Celular Tumoral , Enterócitos/metabolismo , Enterócitos/patologia , Heterozigoto , Humanos , Recém-Nascido , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Masculino , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transporte Proteico
17.
J Neurosci ; 34(4): 1446-61, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453333

RESUMO

The ß subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 α1 subunits and thus contribute to neuronal excitability, neurotransmitter release, and calcium-induced gene regulation. In addition, certain ß subunits are targeted into the nucleus, where they interact directly with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of ß isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual ß variants in specific neuronal functions. In the present study, an alternatively spliced ß4 subunit lacking the variable N terminus (ß4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGCs) and modulates P/Q-type calcium currents in tsA201 cells and CaV2.1 surface expression in neurons. Compared with the other two known full-length ß4 variants (ß4a and ß4b), ß4e is most abundantly expressed in the distal axon, but lacks nuclear-targeting properties. To determine the importance of nuclear targeting of ß4 subunits for transcriptional regulation, we performed whole-genome expression profiling of CGCs from lethargic (ß4-null) mice individually reconstituted with ß4a, ß4b, and ß4e. Notably, the number of genes regulated by each ß4 splice variant correlated with the rank order of their nuclear-targeting properties (ß4b > ß4a > ß4e). Together, these findings support isoform-specific functions of ß4 splice variants in neurons, with ß4b playing a dual role in channel modulation and gene regulation, whereas the newly detected ß4e variant serves exclusively in calcium-channel-dependent functions.


Assuntos
Canais de Cálcio/genética , Expressão Gênica/genética , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Canais de Cálcio/metabolismo , Feminino , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Mol Microbiol ; 88(5): 862-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23617799

RESUMO

Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein-tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl-CoA ligase), SidH (mevalonyl-CoA hydratase) and SidF (anhydromevalonyl-CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH-targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen-type siderophore-producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus nidulans/enzimologia , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Peroxissomos/metabolismo , Sideróforos/metabolismo , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Sequência Conservada , Redes e Vias Metabólicas/genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Homologia de Sequência de Aminoácidos
19.
Blood ; 119(25): 6032-42, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22581448

RESUMO

Gene-targeting studies in mice have identified the essential roles of most prosurvival Bcl-2 family members in normal physiology and under conditions of stress. The function of one member, Bcl2a1/Bfl-1/A1, is only poorly understood because of quadruplication of its gene locus in mice, hindering conventional knockout studies. To overcome this problem, we generated mouse models allowing traceable constitutive or reversible ablation of A1 in the hematopoietic system by RNA interference. Knockdown of A1 impaired early stages of T-cell differentiation, B-cell homeostasis, and sensitized transitional as well as follicular B cells to apoptosis induced by ligation of the B-cell receptor. As a consequence, B-cell proliferation in response to mitogens was severely impaired, whereas that of T cells appeared unaffected. Furthermore, depending on the extent of A1 knockdown, granulocytes showed increased spontaneous death in culture or failed to accumulate in significant numbers in vivo. These models highlight the critical role of A1 in leukocyte development and homeostasis, constituting valuable tools for investigating presumed roles of this Bcl-2 family member in immunity, tumorigenesis, and drug resistance.


Assuntos
Hematopoese/genética , Leucócitos/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Interferência de RNA , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Feminino , Células HEK293 , Hematopoese/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/farmacologia , Antígenos de Histocompatibilidade Menor , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia
20.
Blood ; 115(5): 995-1005, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19965635

RESUMO

Oncogenic c-Myc is known to balance excessive proliferation by apoptosis that can be triggered by p53-dependent and p53-independent signaling networks. Here, we provide evidence that the BH3-only proapoptotic Bcl-2 family members Bcl-2 modifying factor (Bmf) and Bcl-2 antagonist of cell death (Bad) are potent antagonists of c-Myc-driven B-cell lymphomagenesis. Tumor formation was preceded by the accumulation of preneoplastic pre-B and immature immunoglobulin M-positive (IgM(+)) B cells in hematopoietic organs of Emu-myc/bmf(-/-) mice, whereas Emu-myc/bad(-/-) mice showed an increase of pre-B cells limited to the spleen. Although the loss of Bad had no impact on the tumor immunophenotype, Bmf deficiency favored the development of IgM(+) B cell over pre-B cell tumors. This phenomenon was caused by a strong protection of immature IgM(+) B cells from oncogene-driven apoptosis caused by loss of bmf and c-Myc-induced repression of Bmf expression in premalignant pre-B cells. Steady-state levels of B-cell apoptosis also were reduced in the absence of Bad, in support of its role as a sentinel for trophic factor-deprivation. Loss of Bmf reduced the pressure to inactivate p53, whereas Bad deficiency did not, identifying Bmf as a novel component of the p53-independent tumor suppressor pathway triggered by c-Myc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B/metabolismo , Linfoma/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Linfócitos B/patologia , Western Blotting , Feminino , Linfoma/genética , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Baço/metabolismo , Baço/patologia , Análise de Sobrevida , Fatores de Tempo , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína de Morte Celular Associada a bcl/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA