Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498995

RESUMO

Maintenance of the tightly regulated homeostatic environment of the brain is facilitated by the blood-brain barrier (BBB). P-glycoprotein (P-gp), an ATP-binding cassette transporter, is expressed on the luminal surface of the endothelial cells in the BBB, and actively exports a wide variety of substrates to limit exposure of the vulnerable brain environment to waste buildup and neurotoxic compounds. Downregulation of P-gp expression and activity at the BBB have been reported with ageing and in neurodegenerative diseases. Upregulation of P-gp at the BBB contributes to poor therapeutic outcomes due to altered pharmacokinetics of CNS-acting drugs. The regulation of P-gp is highly complex, but unravelling the mechanisms involved may help the development of novel and nuanced strategies to modulate P-gp expression for therapeutic benefit. This review summarises the current understanding of P-gp regulation in the brain, encompassing the transcriptional, post-transcriptional and post-translational mechanisms that have been identified to affect P-gp expression and transport activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Células Endoteliais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Células Endoteliais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central
2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162941

RESUMO

The ATP-binding cassette transporter, P-glycoprotein (P-gp), has been demonstrated to facilitate the clearance of amyloid-beta (Aß) peptides, exporting the neurotoxic entity out of neurons and out of the brain via the blood-brain barrier. However, its expression and function diminish with age and in Alzheimer's disease. P-gp is known to undergo ubiquitination, a post-translational modification that results in internalisation and/or degradation of the protein. NEDD4-1 is a ubiquitin E3 ligase that has previously been shown to ubiquitinate P-gp and reduce its cell surface expression. However, whether this effect translates into altered P-gp activity remains to be determined. siRNA was used to knockdown the expression of Nedd4 in CHO-APP cells. Western blot analysis confirmed that absence of Nedd4 was associated with increased P-gp protein expression. This was accompanied by increased transport activity, as shown by export of the P-gp substrate calcein-AM, as well as enhanced secretion of Aß peptides, as shown by ELISA. These results implicate Nedd4 in the regulation of P-gp, and highlight a potential approach for restoring or augmenting P-gp expression and function to facilitate Aß clearance from the brain.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Clonagem Molecular/métodos , Ubiquitina-Proteína Ligases Nedd4/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Transporte Biológico , Células CHO , Cricetulus , Fluoresceínas/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitinação
3.
Respir Res ; 21(1): 250, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977800

RESUMO

The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Colesterol/metabolismo , Mediadores da Inflamação/metabolismo , Pneumopatias/metabolismo , Transdução de Sinais/fisiologia , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Asma/genética , Asma/metabolismo , Colesterol/genética , Expressão Gênica , Humanos , Pneumopatias/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
4.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383667

RESUMO

Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aß) peptides in the Alzheimer's brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where they deposit and propagate neurotoxicity. The ability for P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, to export Aß across the blood-brain barrier (BBB) has previously been reported. However, controversies surrounding the P-gp-Aß interaction persist. Here, molecular data affirm that both Aß40 and Aß42 peptide isoforms directly interact with and are substrates of P-gp. This was reinforced ex vivo by the inhibition of Aß42 transport in brain capillaries from P-gp-knockout mice. Moreover, we explored whether P-gp could exert the same role in neurons. Comparison between non-neuronal CHO-APP and human neuroblastoma SK-N-SH cells revealed that P-gp is expressed and active in both cell types. Inhibiting P-gp activity using verapamil and nicardipine impaired Aß40 and Aß42 secretion from both cell types, as determined by ELISA. Collectively, these findings implicate P-gp in Aß export from neurons, as well as across the BBB endothelium, and suggest that restoring or enhancing P-gp function could be a viable therapeutic approach for removing excess Aß out of the brain in Alzheimer's disease.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Neurônios/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Células CHO , Capilares/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetulus , Expressão Gênica , Humanos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico
5.
Annu Rev Pharmacol Toxicol ; 56: 447-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26738477

RESUMO

Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.


Assuntos
Esteróis/metabolismo , Animais , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Homeostase/fisiologia , Humanos
6.
Int J Mol Sci ; 20(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159502

RESUMO

Several ATP-Binding Cassette (ABC) transporters, including ABCG1 and the related ABCG4, are essential regulators of cellular lipid homeostasis. ABCG1 is expressed ubiquitously and is functional in the context of atherosclerosis. However, ABCG4 is expressed almost exclusively in brain and has been linked to Alzheimer's disease (AD). These transporters are highly regulated post-translationally by E3 ubiquitin ligases, with the ligase NEDD4-1 (Neural precursor cell-expressed developmentally downregulated gene 4) implicated in their protein stability. In this study, we investigated interacting partners of ABCG1 using peptide-mass spectrometry and identified the potential adaptor protein, Alix (apoptosis-linked gene 2-interacting protein X). In this paper, we hypothesized and investigated whether Alix could facilitate the interaction between NEDD4-1 and the ABC transporters. We showed that Alix and NEDD4-1 proteins were co-expressed in several commonly used cell lines. Knockdown of Alix in cells overexpressing ABCG1 or ABCG4 increased transporter protein expression while co-immunoprecipitation experiments showed interaction between NEDD4-1, Alix, and ABC transporters. In summary, we provide evidence that Alix serves as a co-factor for the interaction between the E3-ubiquitin ligase NEDD4-1 and the ABC transporter targets, ABCG1 and ABCG4.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Animais , Células CHO , Linhagem Celular , Colesterol/metabolismo , Cricetulus , Humanos , Mapas de Interação de Proteínas
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 359-368, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29306077

RESUMO

The ABC lipid transporters, ABCA1 and ABCG1, are essential for maintaining lipid homeostasis in cells such as macrophages by exporting excess cholesterol to extracellular acceptors. These transporters are highly regulated at the post-translational level, including protein ubiquitination. Our aim was to investigate the role of the E3 ubiquitin ligase HECTD1, recently identified as associated with ABCG1, on ABCG1 and ABCA1 protein levels and cholesterol export function. Here, we show that HECTD1 protein is widely expressed in a range of human and murine primary cells and cell lines, including macrophages, neuronal cells and insulin secreting ß-cells. siRNA knockdown of HECTD1 unexpectedly decreased overexpressed ABCG1 protein levels and cell growth, but increased native ABCA1 protein in CHO-K1 cells. Knockdown of HECTD1 in unloaded THP-1 macrophages did not affect ABCG1 but significantly increased ABCA1 protein levels, in wild-type as well as THP-1 cells that do not express ABCG1. Cholesterol export from macrophages to apoA-I over time was increased after knockdown of HECTD1, however these effects were not sustained in cholesterol-loaded cells. In conclusion, we have identified a new candidate, the E3 ubiquitin ligase HECTD1, that may be involved in the regulation of ABCA1-mediated cholesterol export from unloaded macrophages to apoA-I. The exact mechanism by which this ligase affects this pathway remains to be elucidated.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Receptores X do Fígado/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Respir Res ; 18(1): 41, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28241820

RESUMO

Respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD) are characterised by excessive and persistent inflammation. Current treatments are often inadequate for symptom and disease control, and hence new therapies are warranted. Recent emerging research has implicated dyslipidaemia in pulmonary inflammation. Three ATP-binding cassette (ABC) transporters are found in the mammalian lung - ABCA1, ABCG1 and ABCA3 - that are involved in movement of cholesterol and phospholipids from lung cells. The aim of this review is to corroborate the current evidence for the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Here, we summarise results from murine knockout studies, human diseases associated with ABC transporter mutations, and in vitro studies. Disruption to ABC transporter activity results in lipid accumulation and elevated levels of inflammatory cytokines in lung tissue. Furthermore, these ABC-knockout mice exhibit signs of respiratory distress. ABC lipid transporters appear to have a crucial and protective role in the lung. However, our knowledge of the underlying molecular mechanisms for these benefits requires further attention. Understanding the relationship between cholesterol and inflammation in the lung, and the role that ABC transporters play in this may illuminate new pathways to target for the treatment of inflammatory lung diseases.


Assuntos
Subfamília A de Transportador de Cassetes de Ligação de ATP/imunologia , Metabolismo dos Lipídeos/imunologia , Lipídeos/imunologia , Pulmão/imunologia , Modelos Imunológicos , Pneumonia/imunologia , Animais , Citocinas/imunologia , Homeostase/imunologia , Humanos , Camundongos
9.
J Biol Chem ; 290(40): 24604-13, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26296893

RESUMO

The ATP-binding cassette transporter ABCG1 has an essential role in cellular cholesterol homeostasis, and dysregulation has been associated with a number of high burden diseases. Previous studies reported that ABCG1 is ubiquitinated and degraded via the ubiquitin proteasome system. However, so far the molecular mechanism, including the identity of any of the rate-limiting ubiquitination enzymes, or E3 ligases, is unknown. Using liquid chromatography mass spectrometry, we identified two HECT domain E3 ligases associated with ABCG1, named HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase) and NEDD4-1 (Neural precursor cell-expressed developmentally down regulated gene 4), of which the latter is the founding member of the NEDD4 family of ubiquitin ligases. Silencing both HUWE1 and NEDD4-1 in cells overexpressing human ABCG1 significantly increased levels of the ABCG1 monomeric and dimeric protein forms, however ABCA1 protein expression was unaffected. In addition, ligase silencing increased ABCG1-mediated cholesterol export to HDL in cells overexpressing the transporter as well as in THP-1 macrophages. Reciprocally, overexpression of both ligases resulted in a significant reduction in protein levels of both the ABCG1 monomeric and dimeric forms. Like ABCG1, ABCG4 protein levels and cholesterol export activity were significantly increased after silencing both HUWE1 and NEDD4-1 in cells overexpressing this closely related ABC half-transporter. In summary, we have identified for the first time two E3 ligases that are fundamental enzymes in the post-translational regulation of ABCG1 and ABCG4 protein levels and cellular cholesterol export activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lipídeos/química , Ubiquitina-Proteína Ligases/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Transporte Biológico , Células CHO , Linhagem Celular , Colesterol/química , Cromatografia Líquida , Cricetulus , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Macrófagos/metabolismo , Espectrometria de Massas , Ubiquitina-Proteína Ligases Nedd4 , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor
10.
Biochim Biophys Acta ; 1851(7): 956-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25732853

RESUMO

The ATP-binding cassette (ABC) transporter, ABCG1, is a lipid exporter involved in removal of cholesterol from cells that has been investigated for its role in foam cells formation and atherosclerosis. The mechanism by which ABC lipid transporters bind and recognise their substrates is currently unknown. In this study, we identify a critical region in the final transmembrane domain of ABCG1, which is essential for its export function and stabilisation by cholesterol, a post-translational regulatory mechanism that we have recently identified as dependent on protein ubiquitination. This transmembrane region contains several Cholesterol Recognition/interaction Amino acid Consensus (CRAC) motifs, and its inverse CARC motifs. Mutational analyses identify one CRAC motif in particular with Y667 at its core, that is especially important for transport activity to HDL as well as stability of the protein in the presence of cholesterol. In addition, we present a model of how cholesterol docks to this CRAC motif in an energetically favourable manner. This study identifies for the first time how ABCG1 can interact with cholesterol via a functional CRAC domain, which provides the first insight into the substrate-transporter interaction of an ABC lipid exporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/fisiologia , Colesterol/metabolismo , Domínios e Motivos de Interação entre Proteínas , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Sequência de Aminoácidos , Animais , Transporte Biológico/genética , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA