Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 108(2): 491-504, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26059863

RESUMO

The emergence of antibiotic-resistant bacterial pathogens, especially Gram-negative bacteria, has driven investigations into suppressing bacterial virulence via quorum sensing (QS) inhibition strategies instead of bactericidal and bacteriostatic approaches. Here, we investigated several bee products for potential compound(s) that exhibit significant QS inhibitory (QSI) properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism. Manuka propolis produced the strongest violacein inhibition on C. violaceum lawn agar, while bee pollen had no detectable QSI activity and honey had bactericidal activity. Fractionated manuka propolis (pooled fraction 5 or PF5) exhibited the largest violacein inhibition zone (24.5 ± 2.5 mm) at 1 mg dry weight per disc. In C. violaceum liquid cultures, at least 450 µg/ml of manuka propolis PF5 completely inhibited violacein production. Gene expression studies of the vioABCDE operon, involved in violacein biosynthesis, showed significant (≥two-fold) down-regulation of vioA, vioD and vioE in response to manuka propolis PF5. A potential QSI compound identified in manuka propolis PF5 is a hydroxycinnamic acid-derivative, isoprenyl caffeate, with a [M-H] of 247. Complete violacein inhibition in C. violaceum liquid cultures was achieved with at least 50 µg/ml of commercial isoprenyl caffeate. In silico docking experiments suggest that isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA. Further studies on these compounds are warranted toward the development of anti-pathogenic drugs as adjuvants to conventional antibiotic treatments, especially in antibiotic-resistant bacterial infections.


Assuntos
Ácidos Cafeicos/metabolismo , Chromobacterium/efeitos dos fármacos , Chromobacterium/fisiologia , Indóis/antagonistas & inibidores , Própole/química , Percepção de Quorum/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Perfilação da Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Virulência/efeitos dos fármacos
2.
Front Immunol ; 11: 601534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240287

RESUMO

Oxidized cholesterols have emerged as important signaling molecules of immune function, but little is known about the role of these oxysterols during mycobacterial infections. We found that expression of the oxysterol-receptor GPR183 was reduced in blood from patients with tuberculosis (TB) and type 2 diabetes (T2D) compared to TB patients without T2D and was associated with TB disease severity on chest x-ray. GPR183 activation by 7α,25-dihydroxycholesterol (7α,25-OHC) reduced growth of Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis BCG in primary human monocytes, an effect abrogated by the GPR183 antagonist GSK682753. Growth inhibition was associated with reduced IFN-ß and IL-10 expression and enhanced autophagy. Mice lacking GPR183 had significantly increased lung Mtb burden and dysregulated IFNs during early infection. Together, our data demonstrate that GPR183 is an important regulator of intracellular mycobacterial growth and interferons during mycobacterial infection.


Assuntos
Autofagia , Interferons/metabolismo , Leucócitos Mononucleares/microbiologia , Pulmão/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Tuberculose Pulmonar/microbiologia , Animais , Carga Bacteriana , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Receptores Acoplados a Proteínas G/genética , Índice de Gravidade de Doença , Transdução de Sinais , Células THP-1 , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA