Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Cell ; 153(1): 228-39, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540700

RESUMO

The biguanide drug metformin is widely prescribed to treat type 2 diabetes and metabolic syndrome, but its mode of action remains uncertain. Metformin also increases lifespan in Caenorhabditis elegans cocultured with Escherichia coli. This bacterium exerts complex nutritional and pathogenic effects on its nematode predator/host that impact health and aging. We report that metformin increases lifespan by altering microbial folate and methionine metabolism. Alterations in metformin-induced longevity by mutation of worm methionine synthase (metr-1) and S-adenosylmethionine synthase (sams-1) imply metformin-induced methionine restriction in the host, consistent with action of this drug as a dietary restriction mimetic. Metformin increases or decreases worm lifespan, depending on E. coli strain metformin sensitivity and glucose concentration. In mammals, the intestinal microbiome influences host metabolism, including development of metabolic disease. Thus, metformin-induced alteration of microbial metabolism could contribute to therapeutic efficacy-and also to its side effects, which include folate deficiency and gastrointestinal upset.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Ácido Fólico/metabolismo , Hipoglicemiantes/farmacologia , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Metionina/metabolismo , Adenilato Quinase/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Biguanidas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Escherichia coli/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Metagenoma , Metformina/metabolismo , Fatores de Transcrição/metabolismo
2.
Nature ; 477(7365): 482-5, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21938067

RESUMO

Overexpression of sirtuins (NAD(+)-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Histona Desacetilases/genética , Longevidade/fisiologia , Sirtuínas/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica , Histona Desacetilases/metabolismo , Longevidade/genética , Masculino , RNA Mensageiro/análise , RNA Mensageiro/genética , Sirtuínas/metabolismo
3.
PLoS Genet ; 10(2): e1004109, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516399

RESUMO

The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ß and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK ß subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Longevidade/genética , Isoformas de Proteínas/genética , Receptor de Insulina/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
4.
Annu Rev Physiol ; 75: 621-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23190075

RESUMO

Discovering the biological basis of aging is one of the greatest remaining challenges for science. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. A picture is emerging of a signaling network that is sensitive to nutritional status and that controls growth, stress resistance, and aging. This network includes the insulin/IGF-1 and target of rapamycin (TOR) pathways and likely mediates the effects of dietary restriction on aging. Yet the biological processes upon which these pathways act to control life span remain unclear. A long-standing guiding assumption about aging is that it is caused by wear and tear, particularly damage at the molecular level. One view is that reactive oxygen species (ROS), including free radicals, generated as by-products of cellular metabolism, are a major contributor to this damage. Yet many recent tests of the oxidative damage theory have come up negative. Such tests have opened an exciting new phase in biogerontology in which fundamental assumptions about aging are being reexamined and revolutionary concepts are emerging. Among these concepts is the hyperfunction theory, which postulates that processes contributing to growth and reproduction run on in later life, leading to hypertrophic and hyperplastic pathologies. Here we reexamine central concepts about the nature of aging.


Assuntos
Longevidade/genética , Longevidade/fisiologia , Modelos Animais , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Evolução Biológica , Alimentos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
PLoS Biol ; 11(7): e1001613, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23935448

RESUMO

For cells the passage from life to death can involve a regulated, programmed transition. In contrast to cell death, the mechanisms of systemic collapse underlying organismal death remain poorly understood. Here we present evidence of a cascade of cell death involving the calpain-cathepsin necrosis pathway that can drive organismal death in Caenorhabditis elegans. We report that organismal death is accompanied by a burst of intense blue fluorescence, generated within intestinal cells by the necrotic cell death pathway. Such death fluorescence marks an anterior to posterior wave of intestinal cell death that is accompanied by cytosolic acidosis. This wave is propagated via the innexin INX-16, likely by calcium influx. Notably, inhibition of systemic necrosis can delay stress-induced death. We also identify the source of the blue fluorescence, initially present in intestinal lysosome-related organelles (gut granules), as anthranilic acid glucosyl esters--not, as previously surmised, the damage product lipofuscin. Anthranilic acid is derived from tryptophan by action of the kynurenine pathway. These findings reveal a central mechanism of organismal death in C. elegans that is related to necrotic propagation in mammals--e.g., in excitotoxicity and ischemia-induced neurodegeneration. Endogenous anthranilate fluorescence renders visible the spatio-temporal dynamics of C. elegans organismal death.


Assuntos
Caenorhabditis elegans/química , Fluorescência , ortoaminobenzoatos/química , Animais , Ésteres/química , Estresse Oxidativo
7.
PLoS Genet ; 8(3): e1002498, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396654

RESUMO

Iron plays an essential role in many biological processes, but also catalyzes the formation of reactive oxygen species (ROS), which can cause molecular damage. Iron homeostasis is therefore a critical determinant of fitness. In Caenorhabditis elegans, insulin/IGF-1 signaling (IIS) promotes growth and reproduction but limits stress resistance and lifespan through inactivation of the DAF-16/FoxO transcription factor (TF). We report that long-lived daf-2 insulin/IGF-1 receptor mutants show a daf-16-dependent increase in expression of ftn-1, which encodes the iron storage protein H-ferritin. To better understand the regulation of iron homeostasis, we performed a TF-limited genetic screen for factors influencing ftn-1 gene expression. The screen identified the heat-shock TF hsf-1, the MAD bHLH TF mdl-1, and the putative histone acetyl transferase ada-2 as activators of ftn-1 expression. It also revealed that the HIFα homolog hif-1 and its binding partner aha-1 (HIFß) are potent repressors of ftn-1 expression. ftn-1 expression is induced by exposure to iron, and we found that hif-1 was required for this induction. In addition, we found that the prolyl hydroxylase EGL-9, which represses HIF-1 via the von Hippel-Lindau tumor suppressor VHL-1, can also act antagonistically to VHL-1 in regulating ftn-1. This suggests a novel mechanism for HIF target gene regulation by these evolutionarily conserved and clinically important hydroxylases. Our findings imply that the IIS and HIF pathways act together to regulate iron homeostasis in C. elegans. We suggest that IIS/DAF-16 regulation of ftn-1 modulates a trade-off between growth and stress resistance, as elevated iron availability supports growth but also increases ROS production.


Assuntos
Apoferritinas , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Insulin-Like I , Insulina , Ferro/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Hipóxia/genética , Insulina/genética , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Mutação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Bioessays ; 34(6): 466-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22371137

RESUMO

New C. elegans studies imply that lipases and lipid desaturases can mediate signaling effects on aging. But why might fat homeostasis be critical to aging? Could problems with fat handling compromise health in nematodes as they do in mammals? The study of signaling pathways that control longevity could provide the key to one of the great unsolved mysteries of biology: the mechanism of aging. But as our view of the regulatory pathways that control aging grows ever clearer, the nature of aging itself has, if anything, grown more obscure. In particular, focused investigations of the oxidative damage theory have raised questions about an old assumption: that a fundamental cause of aging is accumulation of molecular damage. Could fat dyshomeostasis instead be critical?


Assuntos
Envelhecimento , Caenorhabditis elegans/crescimento & desenvolvimento , Lipídeos/fisiologia , Síndrome Metabólica/metabolismo , Animais , Homeostase/fisiologia , Lipase/antagonistas & inibidores , Lipase/metabolismo , Longevidade , Micronúcleo Germinativo/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
BMC Ecol Evol ; 24(1): 13, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267842

RESUMO

BACKGROUND: In the evolution from unicellular to multicellular life forms, natural selection favored reduced cell proliferation and even programmed cell death if this increased organismal fitness. Could reduced individual fertility or even programmed organismal death similarly increase the fitness of colonies of closely-related metazoan organisms? This possibility is at least consistent with evolutionary theory, and has been supported by computer modelling. Caenorhabditis elegans has a boom and bust life history, where populations of nematodes that are sometimes near clonal subsist on and consume food patches, and then generate dauer larva dispersal propagules. A recent study of an in silico model of C. elegans predicted that one determinant of colony fitness (measured as dauer yield) is minimization of futile food consumption (i.e. that which does not contribute to dauer yield). One way to achieve this is to optimize colony population structure by adjustment of individual fertility. RESULTS: Here we describe development of a C. elegans colony fitness assay, and its use to investigate the effect of altering population structure on colony fitness after population bust. Fitness metrics measured were speed of dauer production, and dauer yield, an indirect measure of efficiency of resource utilization (i.e. conversion of food into dauers). We find that with increasing founder number, speed of dauer production increases (due to earlier bust) but dauer yield rises and falls. In addition, some dauer recovery was detected soon after the post-colony bust peak of dauer yield, suggesting possible bet hedging among dauers. CONCLUSIONS: These results suggest the presence of a fitness trade-off at colony level between speed and efficiency of resource utilization in C. elegans. They also provide indirect evidence that population structure is a determinant of colony level fitness, potentially by affecting level of futile food consumption.


Assuntos
Caenorhabditis elegans , Crescimento Demográfico , Animais , Apoptose , Benchmarking , Bioensaio
10.
Geroscience ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900346

RESUMO

Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.

11.
Cell Metab ; 7(3): 200-3, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18316025

RESUMO

Hormesis refers to the beneficial effects of a treatment that at a higher intensity is harmful. In one form of hormesis, sublethal exposure to stressors induces a response that results in stress resistance. The principle of stress-response hormesis is increasingly finding application in studies of aging, where hormetic increases in life span have been seen in several animal models.


Assuntos
Envelhecimento/metabolismo , Poluentes Ambientais/farmacologia , Longevidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/metabolismo , Adaptação Fisiológica , Animais , Biotransformação , Restrição Calórica , Relação Dose-Resposta a Droga , Poluentes Ambientais/toxicidade , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Estresse Fisiológico/induzido quimicamente , Estresse Fisiológico/fisiopatologia
12.
BMC Biol ; 10: 67, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849329

RESUMO

BACKGROUND: Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. RESULTS: Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. CONCLUSIONS: In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Escherichia coli/crescimento & desenvolvimento , Ácido Fólico/biossíntese , Longevidade/fisiologia , Modelos Biológicos , Ácido 4-Aminobenzoico/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos/genética , Longevidade/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Plasmídeos/metabolismo , Interferência de RNA/efeitos dos fármacos , Sulfametoxazol/farmacologia
13.
Geroscience ; 45(3): 1583-1603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37140725

RESUMO

Liposome-mediated delivery is a possible means to overcome several shortcomings with C. elegans as a model for identifying and testing drugs that retard aging. These include confounding interactions between drugs and the nematodes' bacterial food source and failure of drugs to be taken up into nematode tissues. To explore this, we have tested liposome-mediated delivery of a range of fluorescent dyes and drugs in C. elegans. Liposome encapsulation led to enhanced effects on lifespan, requiring smaller quantities of compounds, and enhanced uptake of several dyes into the gut lumen. However, one dye (Texas red) did not cross into nematode tissues, showing that liposomes cannot ensure the uptake of all compounds. Of six compounds previously reported to extend lifespan (vitamin C, N-acetylcysteine, glutathione (GSH), trimethadione, thioflavin T (ThT), and rapamycin), this effect was reproduced for the latter four in a condition-dependent manner. For GSH and ThT, antibiotics abrogated life extension, implying a bacterially mediated effect. With GSH, this was attributable to reduced early death from pharyngeal infection and associated with alterations of mitochondrial morphology in a manner suggesting a possible innate immune training effect. By contrast, ThT itself exhibited antibiotic effects. For rapamycin, significant increases in lifespan were only seen when bacterial proliferation was prevented. These results document the utility and limitations of liposome-mediated drug delivery for C. elegans. They also illustrate how nematode-bacteria interactions can determine the effects of compounds on C. elegans lifespan in a variety of ways.


Assuntos
Caenorhabditis elegans , Lipossomos , Animais , Lipossomos/farmacologia , Envelhecimento , Longevidade , Bactérias , Sirolimo/farmacologia
14.
Nat Commun ; 14(1): 4381, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474586

RESUMO

In post-reproductive C. elegans, destructive somatic biomass repurposing supports production of yolk which, it was recently shown, is vented and can serve as a foodstuff for larval progeny. This is reminiscent of the suicidal reproductive effort (reproductive death) typical of semelparous organisms such as Pacific salmon. To explore the possibility that C. elegans exhibits reproductive death, we have compared sibling species pairs of the genera Caenorhabditis and Pristionchus with hermaphrodites and females. We report that yolk venting and constitutive, early pathology involving major anatomical changes occur only in hermaphrodites, which are also shorter lived. Moreover, only in hermaphrodites does germline removal suppress senescent pathology and markedly increase lifespan. This is consistent with the hypothesis that C. elegans exhibit reproductive death that is suppressed by germline ablation. If correct, this would imply a major difference in the ageing process between C. elegans and most higher organisms, and potentially explain the exceptional plasticity in C. elegans ageing.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Feminino , Envelhecimento , Longevidade , Reprodução
15.
Ageing Res Rev ; 74: 101557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990845

RESUMO

The process of senescence (aging) is predominantly determined by the action of wild-type genes. For most organisms, this does not reflect any adaptive function that senescence serves, but rather evolutionary effects of declining selection against genes with deleterious effects later in life. To understand aging requires an account of how evolutionary mechanisms give rise to pathogenic gene action and late-life disease, that integrates evolutionary (ultimate) and mechanistic (proximate) causes into a single explanation. A well-supported evolutionary explanation by G.C. Williams argues that senescence can evolve due to pleiotropic effects of alleles with antagonistic effects on fitness and late-life health (antagonistic pleiotropy, AP). What has remained unclear is how gene action gives rise to late-life disease pathophysiology. One ultimate-proximate account is T.B.L. Kirkwood's disposable soma theory. Based on the hypothesis that stochastic molecular damage causes senescence, this reasons that aging is coupled to reproductive fitness due to preferential investment of resources into reproduction, rather than somatic maintenance. An alternative and more recent ultimate-proximate theory argues that aging is largely caused by programmatic, developmental-type mechanisms. Here ideas about AP and programmatic aging are reviewed, particularly those of M.V. Blagosklonny (the hyperfunction theory) and J.P. de Magalhães (the developmental theory), and their capacity to make sense of diverse experimental findings is assessed.


Assuntos
Envelhecimento , Longevidade , Envelhecimento/genética , Evolução Biológica , Biologia , Humanos , Longevidade/genética , Reprodução
16.
Front Genet ; 13: 880343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754809

RESUMO

The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.

17.
Geroscience ; 44(5): 2461-2469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36068483

RESUMO

One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).


Assuntos
Envelhecimento , Senescência Celular , Animais , Camundongos , Senescência Celular/fisiologia , Envelhecimento/fisiologia , Inflamação/metabolismo , Longevidade
18.
Nat Metab ; 4(6): 651-662, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760871

RESUMO

Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Transdução de Sinais
19.
Mol Syst Biol ; 6: 399, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20706209

RESUMO

Insulin/IGF-1 signaling controls metabolism, stress resistance and aging in Caenorhabditis elegans by regulating the activity of the DAF-16/FoxO transcription factor (TF). However, the function of DAF-16 and the topology of the transcriptional network that it crowns remain unclear. Using chromatin profiling by DNA adenine methyltransferase identification (DamID), we identified 907 genes that are bound by DAF-16. These were enriched for genes showing DAF-16-dependent upregulation in long-lived daf-2 insulin/IGF-1 receptor mutants (P=1.4e(-11)). Cross-referencing DAF-16 targets with these upregulated genes (daf-2 versus daf-16; daf-2) identified 65 genes that were DAF-16 regulatory targets. These 65 were enriched for signaling genes, including known determinants of longevity, but not for genes specifying somatic maintenance functions (e.g. detoxification, repair). This suggests that DAF-16 acts within a relatively small transcriptional subnetwork activating (but not suppressing) other regulators of stress resistance and aging, rather than directly regulating terminal effectors of longevity. For most genes bound by DAF-16::DAM, transcriptional regulation by DAF-16 was not detected, perhaps reflecting transcriptionally non-functional TF 'parking sites'. This study demonstrates the efficacy of DamID for chromatin profiling in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica/métodos , Longevidade/fisiologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Longevidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190730, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678027

RESUMO

Standard evolutionary theory, supported by mathematical modelling of outbred, dispersed populations predicts that ageing is not an adaptation. We recently argued that in clonal, viscous populations, programmed organismal death could promote fitness through social benefits and has, in some organisms (e.g. Caenorhabditis elegans), evolved to shorten lifespan. Here, we review previous adaptive death theory, including consumer sacrifice, biomass sacrifice and defensive sacrifice types of altruistic adaptive death. In addition, we discuss possible adaptive death in certain semelparous fish, coevolution of reproductive and adaptive death, and adaptive reproductive senescence in C. elegans. We also describe findings from recent tests for the existence of adaptive death in C. elegans using computer modelling. Such models have provided new insights into how trade-offs between fitness at the individual and colony levels mean that senescent changes can be selected traits. Exploring further the relationship between adaptive death and social interactions, we consider examples where adaptive death results more from action of kin than from self-destructive mechanisms and, to describe this, introduce the term adaptive killing of kin. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Adaptação Biológica , Envelhecimento , Evolução Biológica , Caenorhabditis elegans/fisiologia , Peixes/fisiologia , Seleção Genética , Animais , Coevolução Biológica , Características de História de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA