Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 250(5): 1423-1432, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290031

RESUMO

MAIN CONCLUSION: Nitrogen and CO2 supply interactively regulate whole plant nitrogen partitioning and root anatomical and morphological development in tomato plants. Nitrogen (N) and carbon (C) are the key elements in plant growth and constitute the majority of plant dry matter. Growing at CO2 enrichment has the potential to stimulate the growth of C3 plants, however, growth is often limited by N availability. Thus, the interactive effects of CO2 under different N fertilization rates can affect growth, acclimation to elevated CO2, and yield. However, the majority of research in this field has focused on shoot traits, while neglecting plants' hidden half-the roots. We hypothesize that elevated CO2 and low N effects on transpiration will interactively affect root vascular development and plant N partitioning. Here we studied the effects of elevated CO2 and N concentrations on greenhouse-grown tomato plants, a C3 crop. Our main objective was to determine in what manner the N fertilization rate and elevated CO2 affected root development and nitrogen partitioning among plant organs. Our results indicate that N interacting with the CO2 level affects the development of the root system in terms of the length, anatomy, and partitioning of the N concentration between the roots and shoot. Both CO2 and N concentrations were found to affect xylem size in an opposite manner, elevated CO2 found to repressed, whereas ample N stimulated xylem development. We found that under limiting N and eCO2, the N% increase in the root, while it decreased in the shoot. Under eCO2, the root system size increased with a coordinated decrease in root xylem area. We suggest that tomato root response to elevated CO2 depends on N fertilization rates, and that a decrease in xylem size is a possible underlying response that limits nitrogen allocation from the root into the shoot. Additionally, the greater abundance of root amino acids suggests increased root nitrogen metabolism at eCO2 conditions with ample N.


Assuntos
Aclimatação , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Solanum lycopersicum/fisiologia , Transporte Biológico , Carbono/metabolismo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/crescimento & desenvolvimento , Fotossíntese , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transpiração Vegetal , Xilema/anatomia & histologia , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
2.
BMC Plant Biol ; 15: 37, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652352

RESUMO

BACKGROUND: Seed of Shismus arabicus, a desert annual, display a seasonal tolerance to dehydration. The occurrence of a metabolic seasonal rhythm and its relation with the fluctuations in seed dehydration tolerance was investigated. RESULTS: Dry seeds metabolism was the least affected by the season, while the metabolism of germinated and dehydrated seeds exhibit distinct seasonal patterns. Negative associations exist between amino acids, sugars and TCA cycle intermediates and seed survival, while positive relations exist with seed germination. In contrast, associations between the level of secondary metabolites identified in the dehydrated seeds and survival percentage were evenly distributed in positive and negative values, suggesting a functional role of these metabolites in the establishment of seed dehydration tolerance. CONCLUSION: Our results indicate the occurrence of metabolic biorhythms in germinating and dehydrating seeds associated with seasonal changes in germination and, more pronouncedly, in seed dehydration tolerance. Increased biosynthesis of protective compounds (polyphenols) in dehydrating seeds during the winter season at the expenses of central metabolites likely contributes to the respective enhanced dehydration tolerance monitored.


Assuntos
Dessecação , Germinação , Poaceae/fisiologia , Sementes/fisiologia , Israel , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Estações do Ano
3.
BMC Plant Biol ; 13: 184, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24256338

RESUMO

BACKGROUND: Grapevine metabolism in response to water deficit was studied in two cultivars, Shiraz and Cabernet Sauvignon, which were shown to have different hydraulic behaviors (Hochberg et al. Physiol. Plant. 147:443-453, 2012). RESULTS: Progressive water deficit was found to effect changes in leaf water potentials accompanied by metabolic changes. In both cultivars, but more intensively in Shiraz than Cabernet Sauvignon, water deficit caused a shift to higher osmolality and lower C/N ratios, the latter of which was also reflected in marked increases in amino acids, e.g., Pro, Val, Leu, Thr and Trp, reductions of most organic acids, and changes in the phenylpropanoid pathway. PCA analysis showed that changes in primary metabolism were mostly associated with water stress, while diversification of specialized metabolism was mostly linked to the cultivars. In the phloem sap, drought was characterized by higher ABA concentration and major changes in benzoate levels coinciding with lower stomatal conductance and suberinization of vascular bundles. Enhanced suberin biosynthesis in Shiraz was reflected by the higher abundance of sap hydroxybenzoate derivatives. Correlation-based network analysis revealed that compared to Cabernet Sauvignon, Shiraz had considerably larger and highly coordinated stress-related changes, reflected in its increased metabolic network connectivity under stress. Network analysis also highlighted the structural role of major stress related metabolites, e.g., Pro, quercetin and ascorbate, which drastically altered their connectedness in the Shiraz network under water deficit. CONCLUSIONS: Taken together, the results showed that Vitis vinifera cultivars possess a common metabolic response to water deficit. Central metabolism, and specifically N metabolism, plays a significant role in stress response in vine. At the cultivar level, Cabernet Sauvignon was characterized by milder metabolic perturbations, likely due to a tighter regulation of stomata upon stress induction. Network analysis was successfully implemented to characterize plant stress molecular response and to identify metabolites with a significant structural and biological role in vine stress response.


Assuntos
Frutas/metabolismo , Vitis/metabolismo , Ácido Abscísico/metabolismo , Benzoatos/metabolismo , Desidratação , Secas
4.
Plant Cell Physiol ; 53(1): 38-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22156384

RESUMO

Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid ß-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.


Assuntos
Arabidopsis/embriologia , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Ecótipo , Sementes/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Ciclo do Ácido Cítrico , Desidratação , Condutividade Elétrica , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Germinação/fisiologia , Dissulfeto de Glutationa/metabolismo , Glicólise , Metabolismo dos Lipídeos , Modelos Biológicos , Oxirredução , Análise de Componente Principal , Sementes/citologia
5.
J Exp Bot ; 63(7): 2717-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22268156

RESUMO

Knowledge about the root system structure and the uptake efficiency of root orders is critical to understand the adaptive plasticity of plants towards salt stress. Thus, this study describes the phenological and physiological plasticity of Citrus volkameriana rootstocks under severe NaCl stress on the level of root orders. Phenotypic root traits known to influence uptake processes, for example frequency of root orders, specific root area, cortical thickness, and xylem traits, did not change homogeneously throughout the root system, but changes after 6 months under 90 mM NaCl stress were root order specific. Chloride accumulation significantly increased with decreasing root order, and the Cl(-) concentration in lower root orders exceeded those in leaves. Water flux densities of first-order roots decreased to <20% under salinity and did not recover after stress release. The water flux densities of higher root orders changed marginally under salinity and increased 2- to 6-fold in second and third root orders after short-term stress release. Changes in root order frequency, morphology, and anatomy indicate rapid and major modification of C. volkameriana root systems under salt stress. Reduced water uptake under salinity was related to changes of water flux densities among root orders and to reduced root surface areas. The importance of root orders for water uptake changed under salinity from root tips towards higher root orders. The root order-specific changes reflect differences in vulnerability (indicated by the salt accumulation) and ontogenetic status, and point to functional differences among root orders under high salinity.


Assuntos
Citrus/metabolismo , Raízes de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Água/metabolismo , Citrus/química , Cinética , Fenótipo , Raízes de Plantas/química
6.
Planta ; 231(6): 1475-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20358225

RESUMO

Schismus arabicus, a desert annual grass, is one of the most common pasture annuals in the deserts of Israel and Asia. S. arabicus exhibits a unique set of adaptations and survival strategies, which enable it to germinate, develop and produce seeds even in years with annual rainfall of less than 100 mm. The current study examined whether an annual rhythm exists in the survival ability of S. arabicus seedlings exposed to desiccation. Our results indicate that survival of S. arabicus seedlings after six different periods of 7 to 42 days of desiccation depended on the month of germination of the caryopses (seeds). Seed germination was 80-100% in all experiments, regardless the month of germination; however, seedlings that germinated in different months varied in their root and shoot elongation rates. None of about 2,500 seedlings that germinated in July (in each of the 4 years) survived the desiccation treatment. The percentages of surviving seedlings in each month of June from 2002 to 2005 were less than 40%. In contrast, over 80% of the seedlings that germinated in each of the months of December and January survived after the desiccation periods of 7-42 days. Seedlings that survived were transferred to 5 L soil pots in which the seedlings developed into mature plants, completed their life cycle and produced seeds that germinated well. The current study demonstrated a novel phenomenon indicating that seedling survival in plants may depend on an annual periodicity according to the date of germination.


Assuntos
Dessecação , Periodicidade , Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Germinação/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Chuva , Temperatura , Fatores de Tempo
7.
Funct Plant Biol ; 42(4): 357-365, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480680

RESUMO

Grapevine cultivars possess large variability in their response to water availability, and are therefore considered as a good model to study plant hydraulic adjustments. The current research compared the petiole anatomy of two grapevine (Vitis vinifera L.) cultivars, Shiraz and Cabernet Sauvignon, in respect to hydraulic properties. Hydraulic differences between the cultivar petioles were tested over 3 years (2011-2013). Anatomical differences, hydraulic conductivity and embolism were tested under terminal drought conditions. Additionally, xylem differentiation under well watered (WW) and water deficit (WD) conditions was compared. Shiraz was shown to possess larger xylem vessels that resulted in a significantly higher theoretical specific hydraulic conductivity (Kts), leaf hydraulic conductivity (Kleaf) and maximal petiole hydraulic conductivity (Kpetiole). Under WD, smaller vessels were developed, more noticeably in Shiraz. Results confirmed a link between petiole hydraulic architecture and hydraulic behaviour, providing a simple mechanistic explanation for the higher transpiration rates commonly measured in Shiraz. Smaller xylem vessels in Cabernet Sauvignon could imply on its adaptation to WD, and explains its better performances under such conditions.

8.
Environ Sci Pollut Res Int ; 18(7): 1234-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21380534

RESUMO

INTRODUCTION: Increasing demand for water has stimulated efforts to treat wastewater for reuse in agriculture. Decentralized facilities for wastewater treatment became popular as a solution to remote and small communities. These systems mimic natural wetlands, cleaning wastewater as they flow through a complex of filter media, microbial fauna, and vegetation. The function of plants in constructed wetlands (CWs) has not been fully elucidated yet. DISCUSSION: In the research reported here, we provide evidence for a new use of plant physiological parameters in CWs as bioindicators of water quality along the system. We measured improved plant performance downstream of the CW by means of photochemical efficiency, CO(2) assimilation rate, and cell membrane stability. In addition, we found evidence for temporal improvement of plant performance, which was correlated to the establishment phase of plants in a newly operating CW. It is suggested that improved monitoring and management of CWs should take into planning consideration the promising potential of phyto-indicators.


Assuntos
Plantas/metabolismo , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Áreas Alagadas , Agricultura , Fotoquímica , Desenvolvimento Vegetal , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/normas , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Purificação da Água/normas , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA