RESUMO
Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae) is an invasive wood borer pest that has caused considerable damage to forests. Gut bacteria are of great importance in the biology and ecology of herbivores, especially in growth and adaptation; however, change in the gut bacterial community of this pest feeding on different hosts is largely unknown. In this study, we investigated the gut bacterial communities of A. glabripennis larvae fed on different preferred hosts, Salix matsudana and Ulmus pumila, using 16S rDNA high-throughput sequencing technology. A total of 15 phyla, 25 classes, 65 orders, 114 families, 188 genera, and 170 species were annotated in the gut of A. glabripennis larvae fed on S. matsudana or U. pumila using a 97% similarity cutoff level. The dominant phyla were Firmicutes and Proteobacteria and the core dominant genera were Enterococcus, Gibbsiella, Citrobacter, Enterobacter, and Klebsiella. There was significantly higher alpha diversity in the U. pumila group than in the S. matsudana group, and principal co-ordinate analysis showed significant differences in gut bacterial communities between the two groups. The genera with significant abundance differences between the two groups were Gibbsiella, Enterobacter, Leuconostoc, Rhodobacter, TM7a, norank, Rhodobacter, and Aurantisolimonas, indicating that the abundance of larval gut bacteria was affected by feeding on different hosts. Further network diagrams showed that the complexity of the network structure and the modularity were higher in the U. pumila group than in the S. matsudana group, suggesting more diverse gut bacteria in the U. pumila group. The dominant role of most gut microbiota was related to fermentation and chemoheterotrophy, and specific OTUs positively correlated with different functions were reported. Our study provides an essential resource for the gut bacteria functional study of A. glabripennis associated with host diet.
RESUMO
The effective treatment of central nervous system diseases is a major challenge due to the presence of the blood-brain barrier (BBB). P-aminophenyl-α-d-mannopyranoside (MAN), a kind of mannose analog, was conjugated onto the surface of liposomes (MAN-LIP) to enhance the brain delivery. In this study, we investigated the brain distribution of MAN-LIP based on our previous studies and tried to explore the relationship between the distribution of MAN-LIP and glucose transporters (GLUTs) on the cells. In vivo optical imaging was used to assess the distribution of liposomes in mice brain. The mice administered with MAN-LIP had significantly higher brain fluorescence intensity and MAN-LIP relatively concentrated in the cerebellum and cerebral cortex. Fluorescent microscope and Western blot were used to evaluate the results of lentiviral vector-mediated hSLC2A1 and hSLC2A3 gene transfection into C6, PC12 and vessels of endothelial cell line, bEND.3. The results from live cell station and flow cytometry showed that the cellular uptake of MAN-LIP was significantly improved by GLUT1 and GLUT3 overexpression cells. The transport experiments also demonstrated that the transendothelial ability of MAN-LIP was much stronger when crossing LV-GLUT1/bEND.3 cell monolayers or LV-GLUT3/ bEND.3 cell monolayers, of which GLUT1 and GLUT3 were overexpressed. The combined data indicated that the transcytosis by GLUT1 and GLUT3 was a pathway of MAN-LIP into brain, and the special brain distribution of MAN-LIP was closely related to the non-homogeneous distribution of GLUT1 and GLUT3 in the brain.