Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255846

RESUMO

PC12 cells, which are derived from rat adrenal pheochromocytoma cells, are widely used for the study of neuronal differentiation. NGF induces neuronal differentiation in PC12 cells by activating intracellular pathways via the TrkA receptor, which results in elongated neurites and neuron-like characteristics. Moreover, the differentiation requires both the ERK1/2 and p38 MAPK pathways. In addition to NGF, BMPs can also induce neuronal differentiation in PC12 cells. BMPs are part of the TGF-ß cytokine superfamily and activate signaling pathways such as p38 MAPK and Smad. However, the brief lifespan of NGF and BMPs may limit their effectiveness in living organisms. Although PC12 cells are used to study the effects of various physical stimuli on neuronal differentiation, the development of new methods and an understanding of the molecular mechanisms are ongoing. In this comprehensive review, we discuss the induction of neuronal differentiation in PC12 cells without relying on NGF, which is already established for electrical, electromagnetic, and thermal stimulation but poses a challenge for mechanical, ultrasound, and light stimulation. Furthermore, the mechanisms underlying neuronal differentiation induced by physical stimuli remain largely unknown. Elucidating these mechanisms holds promise for developing new methods for neural regeneration and advancing neuroregenerative medical technologies using neural stem cells.


Assuntos
Neoplasias das Glândulas Suprarrenais , Animais , Ratos , Células PC12 , Diferenciação Celular , Estimulação Física , Proteínas Quinases p38 Ativadas por Mitógeno
2.
J Anat ; 236(4): 622-629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31840255

RESUMO

In the vertebrate body, a metameric structure is present along the anterior-posterior axis. Zebrafish tbx6-/- larvae, in which somite boundaries do not form during embryogenesis, were shown to exhibit abnormal skeletal morphology such as rib, neural arch and hemal arch. In this study, we investigated the role of somite patterning in the formation of anterior vertebrae and ribs in more detail. Using three-dimensional computed tomography scans, we found that anterior vertebrae including the Weberian apparatus were severely affected in tbx6-/- larvae. In addition, pleural ribs of tbx6 mutants exhibited severe defects in the initial ossification, extension of ossification, and formation of parapophyses. Two-colour staining revealed that bifurcation of ribs was caused by fusion or branching of ribs in tbx6-/- . The parapophyses in tbx6-/- juvenile fish showed irregular positioning to centra and abnormal attachment to ribs. Furthermore, we found that the ossification of the distal portion of ribs proceeded along myotome boundaries even in irregularly positioned myotome boundaries. These results provide evidence of the contribution of somite patterning to the formation of the Weberian apparatus and rib in zebrafish.


Assuntos
Padronização Corporal/genética , Costelas/embriologia , Somitos/enzimologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Costelas/diagnóstico por imagem , Somitos/diagnóstico por imagem , Proteínas com Domínio T/genética , Tomografia Computadorizada por Raios X , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Glycobiology ; 29(2): 163-178, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445613

RESUMO

N-linked glycosylation of proteins is the most common post-translational modification of proteins. The enzyme UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) catalyses the first step of N-glycosylation, and DPAGT1 knockout is embryonic lethal in mice. In this study, we identified the sole orthologue (algn-7) of the human DPAGT1 in the nematode C. elegans. The gene activity was disrupted by RNAi and deletion mutagenesis, which resulted in larval lethality, defects in oogenesis and oocyte-to-embryo transition. Endomitotic oocytes, abnormal fusion of pronuclei, abnormal AB cell rotation, disruption of permeation barriers of eggs, and abnormal expression of chitin and chitin synthase in oocytes and eggs were the typical phenotypes observed. The results indicate that N-glycosylation is indispensable for these processes. We further screened an N-glycosylated protein database of C. elegans, and identified 456 germline-expressed genes coding N-glycosylated proteins. By examining RNAi phenotypes, we identified five germline-expressed genes showing similar phenotypes to the algn-7 (RNAi) animals. They were ribo-1, stt-3, ptc-1, ptc-2, and vha-19. We identified known congenital disorders of glycosylation (CDG) genes (ribo-1 and stt-3) and a recently found CDG gene (vha-19). The results show that phenotype analyses using the nematode could be a powerful tool to detect new CDG candidate genes and their associated gene networks.


Assuntos
Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Oócitos/metabolismo , Oogênese/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais
4.
Traffic ; 17(11): 1197-1213, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27558849

RESUMO

Sec1/Munc-18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps-33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps-33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS-33.1 resulted in embryonic lethality. By contrast, vps-33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm-specific organelle. The endocytosis defect in the vps-33.1 mutant was not restored by the expression of VPS-33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS-33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS-33.2 has tissue/organelle specific functions in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endocitose/genética , Endossomos/genética , Lisossomos/genética , Masculino , Microscopia Confocal , Mutação , Oócitos/metabolismo , Oócitos/ultraestrutura , Transporte Proteico , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Proteínas de Transporte Vesicular/genética
5.
Nat Methods ; 12(1): 64-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25419959

RESUMO

Fluorescent Ca(2+) reporters are widely used as readouts of neuronal activities. Here we designed R-CaMP2, a high-affinity red genetically encoded calcium indicator (GECI) with a Hill coefficient near 1. Use of the calmodulin-binding sequence of CaMKK-α and CaMKK-ß in lieu of an M13 sequence resulted in threefold faster rise and decay times of Ca(2+) transients than R-CaMP1.07. These features allowed resolving single action potentials (APs) and recording fast AP trains up to 20-40 Hz in cortical slices. Somatic and synaptic activities of a cortical neuronal ensemble in vivo were imaged with similar efficacy as with previously reported sensitive green GECIs. Combining green and red GECIs, we successfully achieved dual-color monitoring of neuronal activities of distinct cell types, both in the mouse cortex and in freely moving Caenorhabditis elegans. Dual imaging using R-CaMP2 and green GECIs provides a powerful means to interrogate orthogonal and hierarchical neuronal ensembles in vivo.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Indicadores e Reagentes/síntese química , Potenciais de Ação/fisiologia , Animais , Caenorhabditis elegans/efeitos da radiação , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação a Calmodulina , Células Cultivadas , Córtex Cerebral/citologia , Corantes Fluorescentes/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Luz , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
6.
BMC Cell Biol ; 17: 4, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26817689

RESUMO

BACKGROUND: The intestinal cells of Caenorhabditis elegans are filled with heterogeneous granular organelles that are associated with specific organ functions. The best studied of these organelles are lipid droplets and acidified gut granules associated with GLO-1, a homolog of the small GTPase Rab38. In this study, we characterized a subset of the intestinal granules in which HAF-4 and HAF-9 localize on the membrane. HAF-4 and HAF-9 are ATP-binding cassette (ABC) transporter proteins that are homologous to the mammalian lysosomal peptide transporter TAPL (transporter associated with antigen processing-like, ABCB9). RESULTS: Using transgenic worms expressing fluorescent protein-tagged marker proteins, we demonstrated that the HAF-4- and HAF-9-localizing organelles are not lipid droplets and do not participate in yolk protein transport. They were also ruled out as GLO-1-positive acidified gut granules. Furthermore, we clarified that the late endosomal protein RAB-7 localizes to the HAF-4- and HAF-9-localizing organelles and is required for their biogenesis. CONCLUSIONS: Our results indicate that the HAF-4- and HAF-9-localizing organelles are distinct intestinal organelles associated with the endocytic pathway.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Organelas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Masculino , Organelas/genética , Transporte Proteico
7.
Nat Cell Biol ; 9(5): 541-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17401362

RESUMO

Externalization of phosphatidylserine, which is normally restricted to the inner leaflet of plasma membrane, is a hallmark of mammalian apoptosis. It is not known what activates and mediates the phosphatidylserine externalization process in apoptotic cells. Here, we report the development of an annexin V-based phosphatidylserine labelling method and show that a majority of apoptotic germ cells in Caenorhabditis elegans have surface-exposed phosphatidylserine, indicating that phosphatidylserine externalization is a conserved apoptotic event in worms. Importantly, inactivation of the gene encoding either the C. elegans apoptosis-inducing factor (AIF) homologue (WAH-1), a mitochondrial apoptogenic factor, or the C. elegans phospholipid scramblase 1 (SCRM-1), a plasma membrane protein, reduces phosphatidylserine exposure on the surface of apoptotic germ cells and compromises cell-corpse engulfment. WAH-1 associates with SCRM-1 and activates its phospholipid scrambling activity in vitro. Thus WAH-1, after its release from mitochondria during apoptosis, promotes plasma membrane phosphatidylserine externalization through its downstream effector, SCRM-1.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anexina A5/metabolismo , Transporte Biológico , Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Caspases/metabolismo , Membrana Celular/metabolismo , Células Germinativas/enzimologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação , Proteínas de Transferência de Fosfolipídeos/genética , Interferência de RNA , Coloração e Rotulagem/métodos , Fatores de Tempo
8.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38585203

RESUMO

The Sec1/Munc18 (SM) protein VPS45 is a key regulator of SNARE-mediated membrane fusion in endosomal trafficking, but its precise role remains unknown. To understand the function of VPS45 in vivo , we performed a genetic suppressor screen in Caenorhabditis elegans . We found that the temperature-sensitive lethality caused by the loss of VPS-45 can be suppressed by a mutation in another SM protein, VPS33A. The VPS33A M376I mutation is located in domain 3a, which is predicted to be essential for SNARE complex assembly. These results highlight the functional importance of domain 3a in endosomal SM proteins and its role in specific membrane fusion.

9.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38716379

RESUMO

Heterozygous de novo mutations in Munc18-1, which is essential for neurotransmitter release, cause early infantile epileptic encephalopathy. Munc18-1-linked epilepsy is currently an untreatable disorder and its precise disease mechanism remains elusive. Here, we investigated how Munc18-1 pathogenic variants affect inhibitory neurons using Caenorhabditis elegans . Expression analysis revealed that three missense mutant proteins form aggregates in the cell body of gamma-aminobutyric-acid (GABA)-ergic motoneurons, resulting in a strong reduction of their expression in axons. Their defects of axonal expression correlated closely with pentylenetetrazol-induced convulsions, suggesting that the degree of instability of each mutant protein account for the severity of the epileptic phenotypes.

10.
Development ; 137(10): 1657-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20392746

RESUMO

UNC-51 is a serine/threonine protein kinase conserved from yeast to humans. The yeast homolog Atg1 regulates autophagy (catabolic membrane trafficking) required for surviving starvation. In C. elegans, UNC-51 regulates the axon guidance of many neurons by a different mechanism than it and its homologs use for autophagy. UNC-51 regulates the subcellular localization (trafficking) of UNC-5, a receptor for the axon guidance molecule UNC-6/Netrin; however, the molecular details of the role for UNC-51 are largely unknown. Here, we report that UNC-51 physically interacts with LET-92, the catalytic subunit of serine/threonine protein phosphatase 2A (PP2A-C), which plays important roles in many cellular functions. A low allelic dose of LET-92 partially suppressed axon guidance defects of weak, but not severe, unc-51 mutants, and a low allelic dose of PP2A regulatory subunits A (PAA-1/PP2A-A) and B (SUR-6/PP2A-B) partially enhanced the weak unc-51 mutants. We also found that LET-92 can work cell-non-autonomously on axon guidance in neurons, and that LET-92 colocalized with UNC-51 in neurons. In addition, PP2A dephosphorylated phosphoproteins that had been phosphorylated by UNC-51. These results suggest that, by forming a complex, PP2A cooperates with UNC-51 to regulate axon guidance by regulating phosphorylation. This is the first report of a serine/threonine protein phosphatase functioning in axon guidance in vivo.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Proteína Fosfatase 2/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Autofagia/genética , Autofagia/fisiologia , Transporte Axonal/genética , Transporte Axonal/fisiologia , Axônios/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dados de Sequência Molecular , Neurogênese/genética , Neurogênese/fisiologia , Fosforilação/genética , Ligação Proteica/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA