Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Learn Mem ; 20(4): 183-93, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23504516

RESUMO

Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However, whether aging is associated with NCAM alterations that might contribute to age-related cognitive decline is not currently known. In this study, we determined whether conditional NCAM-deficient mice display increased vulnerability to age-related cognitive and emotional alterations. We assessed the NCAM expression levels in the hippocampus and medial prefrontal cortex (mPFC) and characterized the performance of adult and aged conditional NCAM-deficient mice and their age-matched wild-type littermates in a delayed matching-to-place test in the Morris water maze and a delayed reinforced alternation test in the T-maze. Although aging in wild-type mice is associated with an isoform-specific reduction of NCAM expression levels in the hippocampus and mPFC, these mice exhibited only mild impairments in working/episodic-like memory performance. However, aged conditional NCAM-deficient mice displayed pronounced impairments in both the delayed matching-to-place and the delayed reinforced alternation tests. Importantly, the deficits of aged NCAM-deficient mice in these working/episodic-like memory tasks could not be attributed to increased anxiety-like behaviors or to differences in locomotor activity. Taken together, these data indicate that reduced NCAM expression in the forebrain might be a critical factor for the occurrence of cognitive impairments during aging.


Assuntos
Envelhecimento/fisiologia , Transtornos Cognitivos/genética , Moléculas de Adesão de Célula Nervosa/deficiência , Análise de Variância , Animais , Ansiedade/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Adaptação à Escuridão/genética , Comportamento Exploratório/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Moléculas de Adesão de Célula Nervosa/genética , Córtex Pré-Frontal/metabolismo , Isoformas de Proteínas/metabolismo , Reforço Psicológico , Natação/fisiologia , Natação/psicologia
2.
Nat Neurosci ; 11(5): 572-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18425121

RESUMO

Emotional memory is a rapidly acquired and persistent form of memory, and its robustness is in part determined by the initial strength of the memory. Here, we provide new evidence that the protein phosphatase calcineurin (CaN), a potent negative regulator of neuronal signaling that is known to constrain learning and memory, critically regulates the establishment of emotional memory through mechanisms involving the immediate early gene Zif268 (also known as Egr1). We found that CaN is inhibited in the amygdala during the establishment of aversive memory, but Zif268 is activated. Using inducible transgenesis in mice, we further saw that CaN inhibition and Zif268 overexpression during memory establishment strengthen the memory trace and enhance its resistance to extinction. We found that CaN inhibition correlates with increased Zif268 expression and that a common pool of proteins is regulated in the amygdala after CaN inhibition and Zif268 overexpression. Together, these findings reveal a previously unknown mechanism for the control of emotional memory that depends on CaN and Zif268.


Assuntos
Tonsila do Cerebelo/metabolismo , Aprendizagem da Esquiva/fisiologia , Calcineurina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Emoções/fisiologia , Memória/fisiologia , Animais , Calcineurina/genética , Regulação para Baixo/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Extinção Psicológica/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação
3.
J Physiol ; 589(Pt 18): 4491-510, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21768261

RESUMO

SAP97 is a multidomain scaffold protein implicated in the forward trafficking and synaptic localization of NMDA- and AMPA-type glutamate receptors. Alternative splicing of SAP97 transcripts gives rise to palmitoylated αSAP97 and L27-domain containing ßSAP97 isoforms that differentially regulate the subsynaptic localization of GluR1 subunits of AMPA receptors. Here, we examined whether SAP97 isoforms regulate the mechanisms underlying long-term potentiation (LTP) and depression (LTD) and find that both α- and ß-forms of SAP97 impair LTP but enhance LTD via independent isoform-specific mechanisms. Live imaging of α- and ßSAP97 revealed that the altered synaptic plasticity was not due to activity-dependent changes in SAP97 localization or exchange kinetics. However, by recording from pairs of synaptically coupled hippocampal neurons, we show that αSAP97 occludes LTP by enhancing the levels of postsynaptic AMPA receptors, while ßSAP97 blocks LTP by reducing the synaptic localization of NMDA receptors. Examination of the surface pools of AMPA and NMDA receptors indicates that αSAP97 selectively regulates the synaptic pool of AMPA receptors, whereas ßSAP97 regulates the extrasynaptic pools of both AMPA and NMDA receptors. Knockdown of ßSAP97 increases the synaptic localization of both AMPA and NMDA receptors, showing that endogenous ßSAP97 restricts glutamate receptor expression at excitatory synapses. This isoform-dependent differential regulation of synaptic versus extrasynaptic pools of glutamate receptors will determine how many receptors are available for the induction and the expression of synaptic plasticity. Our data support a model wherein SAP97 isoforms can regulate the ability of synapses to undergo plasticity by controlling the surface distribution of AMPA and NMDA receptors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Modelos Animais , Neurônios/citologia , Isoformas de Proteínas , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia
4.
Eur J Neurosci ; 33(10): 1761-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21501252

RESUMO

Changes in the strength of synapses in the hippocampus that occur with long-term potentiation (LTP) or long-term depression (LTD) are thought to underlie the cellular basis of learning and memory. Memory formation is known to be regulated by spacing intervals between training episodes. Using paired whole-cell recordings to record from synapses connecting two CA3 pyramidal neurons, we now show that stimulation frequency and spacing between LTP and LTD induction protocols alter the expression of synaptic plasticity. These effects were found to be dependent on protein phosphatase 1 (PP1), an essential protein serine/threonine phosphatase involved in synaptic plasticity, learning and memory. We also show for the first time that PP1 not only regulates the expression of synaptic plasticity, but also has the ability to depress synaptic transmission at basal activity levels. Moreover, PP1 can sort two consecutive messages received by the postsynaptic neuron and control the direction of change in synaptic strength. This study highlights new roles of PP1 in regulating timing-dependent constraints on the expression of synaptic plasticity that may correlate with memory processes, and together PP1 and the spacing of stimulation protocols provide mechanisms to regulate the expression of synaptic plasticity at CNS synapses.


Assuntos
Estimulação Elétrica , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteína Fosfatase 1/metabolismo , Animais , Hipocampo/fisiologia , Potenciais da Membrana/fisiologia , Memória/fisiologia , Técnicas de Patch-Clamp , Proteína Fosfatase 1/antagonistas & inibidores , Ratos , Ratos Wistar , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
5.
FASEB J ; 24(6): 1747-58, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20097878

RESUMO

The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.


Assuntos
Regulação da Temperatura Corporal , Transportador de Glucose Tipo 2/fisiologia , Glucose/metabolismo , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Western Blotting , Feminino , Glucose/análise , Humanos , Técnicas Imunoenzimáticas , Integrases , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Desacopladora 1 , Iodotironina Desiodinase Tipo II
6.
J Neurosci ; 29(14): 4332-45, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19357261

RESUMO

The synaptic insertion of GluR1-containing AMPA-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, mechanisms responsible for GluR1 insertion and retention at the synapse are unclear. The synapse-associated protein SAP97 directly binds GluR1 and participates in its forward trafficking from the Golgi network to the plasma membrane. Whether SAP97 also plays a role in scaffolding GluR1 at the postsynaptic membrane is controversial, attributable to its expression as a collection of alternatively spliced isoforms with ill-defined spatial and temporal distributions. In the present study, we have used live imaging and electrophysiology to demonstrate that two postsynaptic, N-terminal isoforms of SAP97 directly modulate the levels, dynamics, and function of synaptic GluR1-containing AMPARs. Specifically, the unique N-terminal domains confer distinct subsynaptic localizations onto SAP97, targeting the palmitoylated alpha-isoform to the postsynaptic density (PSD) and the L27 domain-containing beta-isoform primarily to non-PSD, perisynaptic regions. Consequently, alpha- and betaSAP97 differentially influence the subsynaptic localization and dynamics of AMPARs by creating binding sites for GluR1-containing receptors within their respective subdomains. These results indicate that N-terminal splicing of SAP97 can control synaptic strength by regulating the distribution of AMPARs and, hence, their responsiveness to presynaptically released glutamate.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Ácido Glutâmico/fisiologia , Proteínas de Membrana/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de AMPA/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Hipocampo/química , Hipocampo/fisiologia , Proteínas de Membrana/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Terminações Pré-Sinápticas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/química , Sinapses/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
7.
Clin Exp Pharmacol Physiol ; 34(10): 1058-63, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17714094

RESUMO

1. Synapse plasticity, defined as an activity dependent change in the strength of synapses, was first described in 1973 and, since those seminal experiments were reported, the field of synapse plasticity has expanded into one of the most widely studied areas in neuroscience. 2. Significant effort has been focused on determining the expression mechanisms of the changes in synapse strength. The present review will focus on the changes in the post-synaptic expression of glutamate receptors that have been shown to occur during the expression of synapse plasticity. 3. Biochemical studies of excitatory synapses in the central nervous system have revealed a high density of proteins concentrated at dendritic spines. These proteins appear to play critical roles in synaptic structure, plasticity and in trafficking receptors to synapses. 4. There is growing evidence that synapse plasticity could be the cellular basis of certain forms of learning and memory. Determining the behavioural correlates of this fundamental synaptic process will continue to be addressed in current and future research.


Assuntos
Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Animais , Química Encefálica/fisiologia , Humanos , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
8.
Nature ; 418(6901): 970-5, 2002 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12198546

RESUMO

Repetition in learning is a prerequisite for the formation of accurate and long-lasting memory. Practice is most effective when widely distributed over time, rather than when closely spaced or massed. But even after efficient learning, most memories dissipate with time unless frequently used. The molecular mechanisms of these time-dependent constraints on learning and memory are unknown. Here we show that protein phosphatase 1 (PP1) determines the efficacy of learning and memory by limiting acquisition and favouring memory decline. When PP1 is genetically inhibited during learning, short intervals between training episodes are sufficient for optimal performance. The enhanced learning correlates with increased phosphorylation of cyclic AMP-dependent response element binding (CREB) protein, of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and of the GluR1 subunit of the AMPA receptor; it also correlates with CREB-dependent gene expression that, in control mice, occurs only with widely distributed training. Inhibition of PP1 prolongs memory when induced after learning, suggesting that PP1 also promotes forgetting. This property may account for ageing-related cognitive decay, as old mutant animals had preserved memory. Our findings emphasize the physiological importance of PP1 as a suppressor of learning and memory, and as a potential mediator of cognitive decline during ageing.


Assuntos
Hipocampo/enzimologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cognição/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Discriminação Psicológica/fisiologia , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Mutação , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 1 , Subunidades Proteicas , Receptores de AMPA/metabolismo , Percepção Espacial/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA