Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 21(15): 3449-60, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22589245

RESUMO

Duchenne and Becker muscular dystrophies (DMD and BMD) are muscle-wasting diseases caused by mutations in the DMD gene-encoding dystrophin. Usually, out-of-frame deletions give rise to DMD, whereas in-frame deletions result in BMD. BMD patients exhibit a less severe disease because an abnormal but functional dystrophin is produced. This is the rationale for attempts to correct the reading frame by using an exon-skipping strategy. In order to apply this approach to a larger number of patients, a multi-exon skipping strategy of exons 45-55 has been proposed, because it should correct the mRNA reading frame in almost 75% of DMD patients with a deletion. The resulting dystrophin lacks part of the binding site for the neuronal nitric oxide synthase (nNOSµ), which normally binds to spectrin-like repeats 16 and 17 of the dystrophin. Since these domains are encoded by exons 42-45, we investigated the nNOSµ status in muscle biopsies from 12 BMD patients carrying spontaneous deletions spaning exons 45-55. We found a wide spectrum of nNOSµ expression and localization. The strictly cytosolic mislocalization of nNOSµ was associated with the more severe phenotypes. Cytosolic NO production correlated with both hypernitrosylation of the sarcoplasmic reticulum calcium-release-channel ryanodine receptor type-1 (RyR1) and release of calstabin-1, a central hub of Ca(2+) signaling and contraction in muscle. Finally, this study shows that the terminal truncation of the nNOS-binding domain in the 'therapeutic' del45-55 dystrophin is not innocuous, since it can perturb the nNOS-dependent stability of the RyR1/calstabin-1 complex.


Assuntos
Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Óxido Nítrico Sintase Tipo I/análise , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Distrofina/genética , Éxons , Deleção de Genes , Humanos , Pessoa de Meia-Idade , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Deleção de Sequência , Proteínas de Ligação a Tacrolimo/metabolismo
2.
EMBO J ; 29(3): 643-54, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20033060

RESUMO

The alpha1S subunit has a dual function in skeletal muscle: it forms the L-type Ca(2+) channel in T-tubules and is the voltage sensor of excitation-contraction coupling at the level of triads. It has been proposed that L-type Ca(2+) channels might also be voltage-gated sensors linked to transcriptional activity controlling differentiation. By using the U7-exon skipping strategy, we have achieved long-lasting downregulation of alpha1S in adult skeletal muscle. Treated muscles underwent massive atrophy while still displaying significant amounts of alpha1S in the tubular system and being not paralysed. This atrophy implicated the autophagy pathway, which was triggered by neuronal nitric oxide synthase redistribution, activation of FoxO3A, upregulation of autophagy-related genes and autophagosome formation. Subcellular investigations showed that this atrophy was correlated with the disappearance of a minor fraction of alpha1S located throughout the sarcolemma. Our results reveal for the first time that this sarcolemmal fraction could have a role in a signalling pathway determining muscle anabolic or catabolic state and might act as a molecular sensor of muscle activity.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio/fisiologia , Morfogênese/genética , Músculo Esquelético/embriologia , Animais , Autofagia/genética , Sequência de Bases , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Força Muscular/genética , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Tamanho do Órgão/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Distribuição Tecidual/genética
3.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468843

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Animais , Biomarcadores , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Distrofina/metabolismo , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Ratos
4.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917173

RESUMO

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Assuntos
Cálcio , Músculo Esquelético , Animais , Cálcio/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
5.
J Gen Physiol ; 153(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34636893

RESUMO

One of the most important functions of skeletal muscle is to respond to nerve stimuli by contracting. This function ensures body movement but also participates in other important physiological roles, like regulation of glucose homeostasis. Muscle activity is closely regulated to adapt to different demands and shows a plasticity that relies on both transcriptional activity and nerve stimuli. These two processes, both dependent on depolarization of the plasma membrane, have so far been regarded as separated and independent processes due to a lack of evidence of common protein partners or molecular mechanisms. In this study, we reveal intimate functional interactions between the process of excitation-induced contraction and the process of excitation-induced transcriptional activity in skeletal muscle. We show that the plasma membrane voltage-sensing protein CaV1.1 and the ATP-releasing channel Pannexin-1 (Panx1) regulate each other in a reciprocal manner, playing roles in both processes. Specifically, knockdown of CaV1.1 produces chronically elevated extracellular ATP concentrations at rest, consistent with disruption of the normal control of Panx1 activity. Conversely, knockdown of Panx1 affects not only activation of transcription but also CaV1.1 function on the control of muscle fiber contraction. Altogether, our results establish the presence of bidirectional functional regulations between the molecular machineries involved in the control of contraction and transcription induced by membrane depolarization of adult muscle fibers. Our results are important for an integrative understanding of skeletal muscle function and may impact our understanding of several neuromuscular diseases.


Assuntos
Canais de Cálcio Tipo L , Acoplamento Excitação-Contração , Canais de Cálcio Tipo L/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
6.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694926

RESUMO

Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 ß subunit (CaVß1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVß1E. CaVß1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVß1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVß1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVß1E analogous and show a correlation between CaVß1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVß1E or GDF5 might be effective in reducing muscle mass loss in aging.


Assuntos
Envelhecimento/metabolismo , Canais de Cálcio Tipo L/metabolismo , Embrião de Mamíferos/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo , Músculos/anatomia & histologia , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Atrofia , Canais de Cálcio Tipo L/genética , Denervação , Éxons/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Músculos/inervação , Junção Neuromuscular/metabolismo , Tamanho do Órgão , Condicionamento Físico Animal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , Adulto Jovem
7.
Mol Biol Cell ; 30(5): 579-590, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601711

RESUMO

Clathrin plaques are stable features of the plasma membrane observed in several cell types. They are abundant in muscle, where they localize at costameres that link the contractile apparatus to the sarcolemma and connect the sarcolemma to the basal lamina. Here, we show that clathrin plaques and surrounding branched actin filaments form microdomains that anchor a three-dimensional desmin intermediate filament (IF) web. Depletion of clathrin plaque and branched actin components causes accumulation of desmin tangles in the cytoplasm. We show that dynamin 2, whose mutations cause centronuclear myopathy (CNM), regulates both clathrin plaques and surrounding branched actin filaments, while CNM-causing mutations lead to desmin disorganization in a CNM mouse model and patient biopsies. Our results suggest a novel paradigm in cell biology, wherein clathrin plaques act as platforms capable of recruiting branched cortical actin, which in turn anchors IFs, both essential for striated muscle formation and function.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Músculo Esquelético/metabolismo , Animais , Desmina/metabolismo , Dinamina II/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Mutação/genética , Miopatias Congênitas Estruturais/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
8.
Skelet Muscle ; 8(1): 15, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703249

RESUMO

BACKGROUND: Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. METHODS: By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3'UTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. RESULTS: TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3'UTR-luciferase assay, confirming their interaction with the NOS1-3'UTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts. CONCLUSION: These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle.


Assuntos
MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Óxido Nítrico Sintase Tipo I/genética , Adolescente , Adulto , Idoso , Biópsia , Criança , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , MicroRNAs/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mioblastos/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos
9.
Lipids Health Dis ; 5: 27, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17049073

RESUMO

BACKGROUND: The lipodystrophic syndrome (LD) is a disorder resulting from selective damage of adipose tissue by antiretroviral drugs included in therapy controlling human-immunodeficiency-virus-1. In the therapy cocktail the nucleoside reverse transcriptase inhibitors (NRTI) contribute to the development of this syndrome. Cellular target of NRTI was identified as the mitochondrial polymerase-gamma and their toxicity described as a mitochondrial DNA (mtDNA) depletion resulting in a mitochondrial cytopathy and involved in fat redistribution. No mechanisms offer explanation whatsoever for the lipo-atrophic and lipo-hypertrophic phenotype of LD. To understand the occurrence we proposed that the pO2 (oxygen partial pressure) could be a key factor in the development of the LD. For the first time, we report here differential effects of NRTIs on human adipose cells depending on pO2 conditions. RESULTS AND DISCUSSION: We showed that the hypoxia conditions could alter adipogenesis process by modifying expression of adipocyte makers as leptin and the peroxisome proliferator-activated receptor PPARgamma and inhibiting triglyceride (TG) accumulation in adipocytes. Toxicity of NRTI followed on adipose cells in culture under normoxia versus hypoxia conditions showed, differential effects of drugs on mtDNA of these cells depending on pO2 conditions. Moreover, NRTI-treated adipocytes were refractory to the inhibition of adipogenesis under hypoxia. Finally, our hypothesis that variations of pO2 could exist between adipose tissue from anatomical origins was supported by staining of the hypoxic-induced angiopoietin ANGPTL4 depended on the location of fat. CONCLUSION: Toxicity of NRTIs have been shown to be opposite on human adipose cells depending on the oxygen availability. These data suggest that the LD phenotype may be a differential consequence of NRTI effects, depending on the metabolic status of the targeted adipose tissues and provide new insights into the opposite effects of antiretroviral treatment, as observed for the lipo-atrophic and lipo-hypertrophic phenotype characteristic of LD.


Assuntos
Tecido Adiposo/metabolismo , Síndrome de Lipodistrofia Associada ao HIV/fisiopatologia , Oxigênio/metabolismo , Inibidores da Transcriptase Reversa/efeitos adversos , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Tecido Adiposo/efeitos dos fármacos , Células Cultivadas , DNA Mitocondrial/efeitos dos fármacos , Regulação da Expressão Gênica , Síndrome de Lipodistrofia Associada ao HIV/etiologia , Síndrome de Lipodistrofia Associada ao HIV/metabolismo , Humanos , Hipóxia/fisiopatologia , Leptina/genética , Leptina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Peptídeos Cíclicos , Fenótipo , Somatostatina/análogos & derivados , Somatostatina/genética , Somatostatina/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismo
10.
Hum Gene Ther ; 27(9): 712-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279388

RESUMO

At present, the clinically most advanced strategy to treat Duchenne muscular dystrophy (DMD) is the exon-skipping strategy. Whereas antisense oligonucleotide-based clinical trials are underway for DMD, it is essential to determine the dystrophin restoration threshold needed to ensure improvement of muscle physiology at the molecular level. A preclinical trial has been conducted in golden retriever muscular dystrophy (GRMD) dogs treated in a forelimb by locoregional delivery of rAAV8-U7snRNA to promote exon skipping on the canine dystrophin messenger. Here, we exploited rAAV8-U7snRNA-transduced GRMD muscle samples, well characterized for their percentage of dystrophin-positive fibers, with the aim of defining the threshold of dystrophin rescue necessary for normalization of the status of neuronal nitric oxide synthase mu (nNOSµ), inducible nitric oxide synthase (iNOS), and ryanodine receptor-calcium release channel type 1 (RyR1), crucial actors for efficient contractile function. Results showed that restoration of dystrophin in 40% of muscle fibers is needed to decrease abnormal cytosolic nNOSµ expression and to reduce overexpression of iNOS, these two parameters leading to a reduction in the NO level in the muscle fibers. Furthermore, the same percentage of dystrophin-positive fibers of 40% was associated with the normalization of RyR1 nitrosylation status and with stabilization of the RyR1-calstabin1 complex that is required to facilitate coupled gating. We concluded that a minimal threshold of 40% of dystrophin-positive fibers is necessary for the reinstatement of central proteins needed for proper muscle contractile function, and thus identified a rate of dystrophin expression significantly improving, at the molecular level, the dystrophic muscle physiology.


Assuntos
Distrofina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cães , Músculo Esquelético/citologia , Nitrosação
11.
J Cell Biol ; 205(3): 377-93, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24798732

RESUMO

The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM-sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cadeias Pesadas de Clatrina/metabolismo , Costâmeros/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sarcômeros/metabolismo , Células 3T3 , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Cadeias Pesadas de Clatrina/genética , Costâmeros/patologia , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Dinamina II/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Contração Muscular , Fibras Musculares Esqueléticas/patologia , Força Muscular , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Sarcômeros/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA