Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nucleic Acids Res ; 49(11): 6100-6113, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107015

RESUMO

Pulmonary diseases offer many targets for oligonucleotide therapeutics. However, effective delivery of oligonucleotides to the lung is challenging. For example, splicing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) affect a significant cohort of Cystic Fibrosis (CF) patients. These individuals could potentially benefit from treatment with splice switching oligonucleotides (SSOs) that can modulate splicing of CFTR and restore its activity. However, previous studies in cell culture used oligonucleotide transfection methods that cannot be safely translated in vivo. In this report, we demonstrate effective correction of a splicing mutation in the lung of a mouse model using SSOs. Moreover, we also demonstrate effective correction of a CFTR splicing mutation in a pre-clinical CF patient-derived cell model. We utilized a highly effective delivery strategy for oligonucleotides by combining peptide-morpholino (PPMO) SSOs with small molecules termed OECs. PPMOs distribute broadly into the lung and other tissues while OECs potentiate the effects of oligonucleotides by releasing them from endosomal entrapment. The combined PPMO plus OEC approach proved to be effective both in CF patient cells and in vivo in the mouse lung and thus may offer a path to the development of novel therapeutics for splicing mutations in CF and other lung diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Pulmão/metabolismo , Morfolinos/administração & dosagem , Splicing de RNA , Animais , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Camundongos , Mutação , Peptídeos , Mucosa Respiratória/metabolismo , Transfecção
2.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34172469

RESUMO

QUESTION: Cystic fibrosis (CF) is characterised by the accumulation of viscous adherent mucus in the lungs. While several hypotheses invoke a direct relationship with cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction (i.e. acidic airway surface liquid (ASL) pH, low bicarbonate (HCO3 -) concentration, airway dehydration), the dominant biochemical alteration of CF mucus remains unknown. MATERIALS/METHODS: We characterised a novel cell line (CFTR-KO Calu3 cells) and the responses of human bronchial epithelial (HBE) cells from subjects with G551D or F508del mutations to ivacaftor and elexacaftor-tezacaftor-ivacaftor. A spectrum of assays such as short-circuit currents, quantitative PCR, ASL pH, Western blotting, light scattering/refractometry (size-exclusion chromatography with inline multi-angle light scattering), scanning electron microscopy, percentage solids and particle tracking were performed to determine the impact of CFTR function on mucus properties. RESULTS: Loss of CFTR function in Calu3 cells resulted in ASL pH acidification and mucus hyperconcentration (dehydration). Modulation of CFTR in CF HBE cells did not affect ASL pH or mucin mRNA expression, but decreased mucus concentration, relaxed mucus network ultrastructure and improved mucus transport. In contrast with modulator-treated cells, a large fraction of airway mucins remained attached to naïve CF cells following short apical washes, as revealed by the use of reducing agents to remove residual mucus from the cell surfaces. Extended hydration, but not buffers alkalised with sodium hydroxide or HCO3 -, normalised mucus recovery to modulator-treated cell levels. CONCLUSION: These results indicate that airway dehydration, not acidic pH and/or low [HCO3 -], is responsible for abnormal mucus properties in CF airways and CFTR modulation predominantly restores normal mucin entanglement.


Assuntos
Fibrose Cística , Bicarbonatos/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Muco/metabolismo
3.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321047

RESUMO

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Humanos
4.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947992

RESUMO

Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Medicina de Precisão , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Transdução de Sinais
6.
BMC Cell Biol ; 19(1): 15, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111276

RESUMO

BACKGROUND: Conditional reprogramming has enabled the development of long-lived, normal epithelial cell lines from mice and humans by in vitro culture with ROCK inhibitor on a feeder layer. We applied this technology to mouse small intestine to create 2D mouse intestinal epithelial monolayers (IEC monolayers) from genetic mouse models for functional analysis. RESULTS: IEC monolayers form epithelial colonies that proliferate on a feeder cell layer and are able to maintain their genotype over long-term passage. IEC monolayers form 3D spheroids in matrigel culture and monolayers on transwell inserts making them useful for functional analyses. IEC monolayers derived from the Cystic Fibrosis (CF) mouse model CFTR ∆F508 fail to respond to CFTR activator forskolin in 3D matrigel culture as measured by spheroid swelling and transwell monolayer culture via Ussing chamber electrophysiology. Tumor IEC monolayers generated from the ApcMin/+ mouse intestinal cancer model grow more quickly than wild-type (WT) IEC monolayers both on feeders and as spheroids in matrigel culture. CONCLUSIONS: These results indicate that generation of IEC monolayers is a useful model system for growing large numbers of genotype-specific mouse intestinal epithelial cells that may be used in functional studies to examine molecular mechanisms of disease and to identify and assess novel therapeutic compounds.


Assuntos
Células Epiteliais/citologia , Intestinos/citologia , Organoides/citologia , Células 3T3 , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Alelos , Animais , Proliferação de Células , Autorrenovação Celular , Forma Celular , Células Cultivadas , Reprogramação Celular , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética
7.
Am J Respir Cell Mol Biol ; 56(5): 568-574, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27983869

RESUMO

Well-differentiated primary human bronchial epithelial (HBE) cell cultures are vital for cystic fibrosis (CF) research, particularly for the development of cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs. Culturing of epithelial cells with irradiated 3T3 fibroblast feeder cells plus the RhoA kinase inhibitor Y-27632 (Y), termed conditionally reprogrammed cell (CRC) technology, enhances cell growth and lifespan while preserving cell-of-origin functionality. We initially determined the electrophysiological and morphological characteristics of conventional versus CRC-expanded non-CF HBE cells. On the basis of these findings, we then created six CF cell CRC populations, three from sequentially obtained CF lungs and three from F508 del homozygous donors previously obtained and cryopreserved using conventional culture methods. Growth curves were plotted, and cells were subcultured, without irradiated feeders plus Y, into air-liquid interface conditions in nonproprietary and proprietary Ultroser G-containing media and were allowed to differentiate. Ussing chamber studies were performed after treatment of F508 del homozygous CF cells with the CFTR modulator VX-809. Bronchial epithelial cells grew exponentially in feeders plus Y, dramatically surpassing the numbers of conventionally grown cells. Passage 5 and 10 CRC HBE cells formed confluent mucociliary air-liquid interface cultures. There were differences in cell morphology and current magnitude as a function of extended passage, but the effect of VX-809 in increasing CFTR function was significant in CRC-expanded F508 del HBE cells. Thus, CRC technology expands the supply of functional primary CF HBE cells for testing CFTR modulators in Ussing chambers.


Assuntos
Brônquios/patologia , Reprogramação Celular , Fibrose Cística/patologia , Células Epiteliais/patologia , Animais , Linhagem Celular , Proliferação de Células , Forma Celular , Fibrose Cística/fisiopatologia , Fenômenos Eletrofisiológicos , Humanos , Camundongos
8.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L550-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402691

RESUMO

Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Quinolonas/farmacologia , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação de Sentido Incorreto , Dobramento de Proteína/efeitos dos fármacos , Deleção de Sequência
9.
J Biol Chem ; 289(33): 23029-23042, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973914

RESUMO

The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.


Assuntos
Canais Epiteliais de Sódio/química , Simulação de Dinâmica Molecular , Regulação Alostérica/fisiologia , Animais , Canais Epiteliais de Sódio/genética , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Ratos
11.
ERJ Open Res ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226069

RESUMO

Rescue of N1303K CFTR by highly effective modulator therapy (HEMT) is enabled by CF airway inflammation. These findings suggest that evaluation of HEMT for rare CFTR mutations must be performed under inflammatory conditions relevant to CF airways. https://bit.ly/3tTcoJE.

12.
bioRxiv ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39211176

RESUMO

Rationale: Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, is a rare immunodeficiency disease typically caused by dominant-negative STAT3 mutations. STAT3-HIES syndrome is characterized by chronic pulmonary infection and inflammation, suggesting impairment of pulmonary innate host defense. Objectives: To identify airway epithelial host defense defects consequent to STAT3 mutations that, in addition to reported mutant STAT3 immunologic abnormalities, produce pulmonary infection. Methods: STAT3-HIES sputum was evaluated for biochemical/biophysical properties. STAT3-HIES excised lungs were harvested for histology; bronchial brush samples were collected for RNA sequencing and in vitro culture. A STAT3-HIES-specific mutation (R382W), expressed by lentiviruses, and a STAT3 knockout, generated by CRISPR/Cas9, were maintained in normal human bronchial epithelia under basal or inflammatory (IL1ß) conditions. Effects of STAT3 deficiency on transcriptomics, and epithelial ion channel, secretory, antimicrobial, and ciliary functions were assessed. Measurements and Main Results: Mucus concentrations and viscoelasticity were increased in STAT3-HIES sputum. STAT3-HIES excised lungs exhibited mucus obstruction and elevated IL1ß expression. STAT3 deficiency impaired CFTR-dependent fluid and mucin secretion, inhibited expression of antimicrobial peptides, cytokines, and chemokines, and acidified airway surface liquid at baseline and post-IL1ß exposure in vitro. Notably, mutant STAT3 suppressed IL1R1 expression. STAT3 mutations also inhibited ciliogenesis in vivo and impaired mucociliary transport in vitro, a process mediated via HES6 suppression. Administration of a γ-secretase inhibitor increased HES6 expression and improved ciliogenesis in STAT3 R382W mutant cells. Conclusions: STAT3 dysfunction leads to multi-component defects in airway epithelial innate defense, which, in conjunction with STAT3-HIES immune deficiency, contributes to chronic pulmonary infection.

14.
PLoS Pathog ; 7(5): e1002053, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625534

RESUMO

Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER) expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF) to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV) infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR), we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus, we surmised that factors enlisted to process misfolded proteins such as ΔF508-CFTR in the secretory pathway also act to restrict viral infection. In line with this hypothesis, we found that AAV trafficked to the microtubule organizing center and localized near Golgi/ER transport proteins. Moreover, AAV infection efficiency could be modulated with siRNA-mediated knockdown of proteins involved in processing ΔF508-CFTR or sorting retrograde cargo from the Golgi and ER (calnexin, KDEL-R, ß-COP, and PSMB3). In summary, our data support a model where AAV exploits a compromised secretory system and, importantly, underscore the gravity with which a stressed subcellular environment, under internal or external insults, can impact infection efficiency.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/metabolismo , Dependovirus/metabolismo , Dependovirus/patogenicidade , Retículo Endoplasmático/metabolismo , Infecções por Parvoviridae/metabolismo , Animais , Linhagem Celular , Cricetinae , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Suscetibilidade a Doenças , Citometria de Fluxo , Células HeLa , Humanos , Inflamação , Pulmão , Mesocricetus , Centro Organizador dos Microtúbulos/metabolismo , Mutação , Reação em Cadeia da Polimerase , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno , Estresse Fisiológico
15.
FASEB J ; 26(2): 533-45, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21990373

RESUMO

Cigarette smoke (CS) exposure induces mucus obstruction and the development of chronic bronchitis (CB). While many of these responses are determined genetically, little is known about the effects CS can exert on pulmonary epithelia at the protein level. We, therefore, tested the hypothesis that CS exerts direct effects on the CFTR protein, which could impair airway hydration, leading to the mucus stasis characteristic of both cystic fibrosis and CB. In vivo and in vitro studies demonstrated that CS rapidly decreased CFTR activity, leading to airway surface liquid (ASL) volume depletion (i.e., dehydration). Further studies revealed that CS induced internalization of CFTR. Surprisingly, CS-internalized CFTR did not colocalize with lysosomal proteins. Instead, the bulk of CFTR shifted to a detergent-resistant fraction within the cell and colocalized with the intermediate filament vimentin, suggesting that CS induced CFTR movement into an aggresome-like, perinuclear compartment. To test whether airway dehydration could be reversed, we used hypertonic saline (HS) as an osmolyte to rehydrate ASL. HS restored ASL height in CS-exposed, dehydrated airway cultures. Similarly, inhaled HS restored mucus transport and increased clearance in patients with CB. Thus, we propose that CS exposure rapidly impairs CFTR function by internalizing CFTR, leading to ASL dehydration, which promotes mucus stasis and a failure of mucus clearance, leaving smokers at risk for developing CB. Furthermore, our data suggest that strategies to rehydrate airway surfaces may provide a novel form of therapy for patients with CB.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pulmão/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Adulto , Idoso , Animais , Sequência de Bases , Transporte Biológico Ativo , Água Corporal/metabolismo , Bronquite Crônica/etiologia , Bronquite Crônica/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Cricetinae , Fibrose Cística/etiologia , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Primers do DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Depuração Mucociliar , Mucosa Respiratória/metabolismo , Solução Salina Hipertônica/farmacologia , Fumaça/efeitos adversos , Solubilidade
16.
J Cyst Fibros ; 22 Suppl 1: S32-S38, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529661

RESUMO

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Medicina de Precisão , Mutação , Brônquios/metabolismo
17.
Cells ; 12(22)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998353

RESUMO

People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Técnicas de Cocultura , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pulmão/metabolismo
18.
Sci Transl Med ; 15(699): eabo7728, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285404

RESUMO

Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of ß and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.


Assuntos
COVID-19 , Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo , Muco/metabolismo , Hipóxia/metabolismo
19.
Biochemistry ; 51(16): 3460-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22471557

RESUMO

Limited proteolysis, accomplished by endopeptidases, is a ubiquitous phenomenon underlying the regulation and activation of many enzymes, receptors, and other proteins synthesized as inactive precursors. Serine proteases make up one of the largest and most conserved families of endopeptidases involved in diverse cellular activities, including wound healing, blood coagulation, and immune responses. Heteromeric α,ß,γ-epithelial sodium channels (ENaC) associated with diseases like cystic fibrosis and Liddle's syndrome are irreversibly stimulated by membrane-anchored proteases (MAPs) and furin-like convertases. Matriptase/channel activating protease-3 (CAP3) is one of the several MAPs that potently activate ENaC. Despite identification of protease cleavage sites, the basis for the enhanced susceptibility of α- and γ-ENaC to proteases remains elusive. Here, we elucidate the energetic and structural bases for activation of ENaC by CAP3. We find a region near the γ-ENaC furin site that has previously not been identified as a critical cleavage site for CAP3-mediated stimulation. We also report that CAP3 mediates cleavage of ENaC at basic residues downstream of the furin site. Our results indicate that surface proteases alone are sufficient to fully activate uncleaved ENaC and explain how ENaC in epithelia expressing surface-active proteases can appear refractory to soluble proteases. Our results support a model in which proteases prime ENaC for activation by cleaving at the furin site, and cleavage at downstream sites is accomplished by membrane surface proteases or extracellular soluble proteases. On the basis of our results, we propose a dynamics-driven "anglerfish" mechanism that explains less stringent sequence requirements for substrate recognition and cleavage by matriptase than by furin.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Serina Endopeptidases/metabolismo , Animais , Canais Epiteliais de Sódio/química , Furina/metabolismo , Humanos , Transporte de Íons , Oócitos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Serpinas/química , Serpinas/genética , Serpinas/metabolismo , Relação Estrutura-Atividade , Xenopus laevis/metabolismo
20.
Nat Chem Biol ; 6(1): 25-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19966789

RESUMO

Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach for modifying the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation, which lead to system failures. The DeltaF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to the premature lung failure and reduced lifespan responsible for cystic fibrosis. We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of those of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of DeltaF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of cystic fibrosis and other human misfolding disorders.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Histona Desacetilases/metabolismo , Mutação , Animais , Brônquios/metabolismo , Membrana Celular/metabolismo , Cricetinae , Células Epiteliais/metabolismo , Inativação Gênica , Humanos , Ácidos Hidroxâmicos/química , Desnaturação Proteica , Dobramento de Proteína , RNA Interferente Pequeno/metabolismo , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA