Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Ophthalmic Genet ; 39(1): 73-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28945494

RESUMO

PURPOSE: To investigate the clinical characteristics and genetic basis of inherited retinal degeneration (IRD) in six unrelated pedigrees from Mexico. METHODS: A complete ophthalmic evaluation including measurement of visual acuities, Goldman kinetic or Humphrey dynamic perimetry, Amsler test, fundus photography, and color vision testing was performed. Family history and blood samples were collected from available family members. DNA from members of two pedigrees was examined for known mutations using the APEX ARRP genotyping microarray and one pedigree using the APEX LCA genotyping microarray. The remaining three pedigrees were analyzed using a custom-designed targeted capture array covering the exons of 233 known retinal degeneration genes. Sequencing was performed on Illumina HiSeq. Reads were mapped against hg19, and variants were annotated using GATK and filtered by exomeSuite. Segregation and ethnicity-matched control sample analyses were performed by dideoxy sequencing. RESULTS: Six pedigrees with IRD were analyzed. Nine rare or novel, potentially pathogenic variants segregating with the phenotype were detected in IMPDH1, USH2A, RPE65, ABCA4, and FAM161A genes. Among these, six were known mutations while the remaining three changes in USH2A, RPE65, and FAM161A genes have not been previously reported to be associated with IRD. Analysis of 100 ethnicity-matched controls did not detect the presence of these three novel variants indicating, these are rare variants in the Mexican population. CONCLUSIONS: Screening patients diagnosed with IRD from Mexico identified six known mutations and three rare or novel potentially damaging variants in IMPDH1, USH2A, RPE65, ABCA4, and FAM161A genes that segregated with disease.


Assuntos
Proteínas do Olho/genética , Mutação , Degeneração Retiniana/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Pré-Escolar , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/genética , Feminino , Determinismo Genético , Técnicas de Genotipagem , Humanos , IMP Desidrogenase/genética , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Linhagem , Fenótipo , Degeneração Retiniana/etnologia , Sequenciamento do Exoma , cis-trans-Isomerases/genética
2.
Oxid Med Cell Longev ; 2016: 8627384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26989455

RESUMO

We studied the age-dependent regulation of the expression of the antioxidant enzyme manganese superoxide dismutase (MnSOD encoded by Sod2) through promoter methylation. C57Bl/6 mice were either (i) sedentary (SED), (ii) treated with the antioxidant catechin (CAT), or (iii) voluntarily exercised (EX) from weaning (1-month old; mo) to 9 mo. Then, all mice aged sedentarily and were untreated until 12 mo. Sod2 promoter methylation was similar in all groups in 9 mo but decreased (p < 0.05) in 12 mo SED mice only, which was associated with an increased (p < 0.05) transcriptional activity in vitro. At all ages, femoral artery endothelial function was maintained; this was due to an increased (p < 0.05) contribution of eNOS-derived NO in 12 mo SED mice only. CAT and EX prevented these changes in age-related endothelial function. Thus, a ROS-dependent epigenetic positive regulation of Sod2 gene expression likely represents a defense mechanism prolonging eNOS function in aging mouse femoral arteries.


Assuntos
Envelhecimento/metabolismo , Metilação de DNA , Artéria Femoral/enzimologia , Regiões Promotoras Genéticas , Superóxido Dismutase/biossíntese , Transcrição Gênica , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Catequina/farmacologia , Camundongos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Condicionamento Físico Animal , Superóxido Dismutase/genética
3.
PLoS One ; 10(6): e0128988, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039597

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging de novo mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS). METHODS: To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls. RESULTS: We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM.


Assuntos
Proteína p300 Associada a E1A/genética , Predisposição Genética para Doença , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adulto , Algoritmos , Estudos de Casos e Controles , Feminino , Expressão Gênica , Heterogeneidade Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Esquizofrenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA