Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 493, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833626

RESUMO

BACKGROUND: Reproductive stage drought stress (RDS) is a major global threat to rice production. Due to climate change, water scarcity is becoming an increasingly common phenomenon in major rice-growing areas worldwide. Understanding RDS mechanisms will allow candidate gene identification to generate novel rice genotypes tolerant to RDS. RESULTS: To generate novel rice genotypes that can sustain yield under RDS, we performed gamma-irradiation mediated mutation breeding in the drought stress susceptible mega rice variety, MTU1010. One of the mutant MM11 (MTU1010 derived mutant11) shows consistently increased performance in yield-related traits under field conditions consecutively for four generations. In addition, compared to MTU1010, the yield of MM11 is sustained in prolonged drought imposed during the reproductive stage under field and in pot culture conditions. A comparative emerged panicle transcriptome analysis of the MTU1010 and MM11 suggested metabolic adjustment, enhanced photosynthetic ability, and hormone interplay in regulating yield under drought responses during emerged panicle development. Regulatory network analysis revealed few putative significant transcription factor (TF)-target interactions involved in integrated signalling between panicle development, yield and drought stress. CONCLUSIONS: A gamma-irradiate rice mutant MM11 was identified by mutation breeding, and it showed higher potential to sustain yield under reproductive stage drought stress in field and pot culture conditions. Further, a comparative panicle transcriptome revealed significant biological processes and molecular regulators involved in emerged panicle development, yield and drought stress integration. The study extends our understanding of the physiological mechanisms and candidate genes involved in sustaining yield under drought stress.


Assuntos
Oryza , Transcriptoma , Oryza/metabolismo , Secas , Melhoramento Vegetal , Genes Reguladores , Estresse Fisiológico/genética
2.
Plant Cell Physiol ; 63(8): 1038-1051, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35662353

RESUMO

Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.


Assuntos
Arabidopsis , Solo , Arabidopsis/genética , Ecossistema , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Estudos Retrospectivos
3.
Plant Commun ; 4(6): 100726, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37789617

RESUMO

Rapid climate change has led to enhanced soil salinity, one of the major determinants of land degradation, resulting in low agricultural productivity. This has a strong negative impact on food security and environmental sustainability. Plants display various physiological, developmental, and cellular responses to deal with salt stress. Recent studies have highlighted the root cap as the primary stress sensor and revealed its crucial role in halotropism. The root cap covers the primary root meristem and is the first cell type to sense and respond to soil salinity, relaying the signal to neighboring cell types. However, it remains unclear how root-cap cells perceive salt stress and contribute to the salt-stress response. Here, we performed a root-cap cell-specific proteomics study to identify changes in the proteome caused by salt stress. The study revealed a very specific salt-stress response pattern in root-cap cells compared with non-root-cap cells and identified several novel proteins unique to the root cap. Root-cap-specific protein-protein interaction (PPI) networks derived by superimposing proteomics data onto known global PPI networks revealed that the endoplasmic reticulum (ER) stress pathway is specifically activated in root-cap cells upon salt stress. Importantly, we identified root-cap-specific jacalin-associated lectins (JALs) expressed in response to salt stress. A JAL10-GFP fusion protein was shown to be localized to the ER. Analysis of jal10 mutants indicated a role for JAL10 in regulating the ER stress pathway in response to salt. Taken together, our findings highlight the participation of specific root-cap proteins in salt-stress response pathways. Furthermore, root-cap-specific JAL proteins and their role in the salt-mediated ER stress pathway open a new avenue for exploring tolerance mechanisms and devising better strategies to increase plant salinity tolerance and enhance agricultural productivity.


Assuntos
Proteínas de Plantas , Proteoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Lectinas , Estresse do Retículo Endoplasmático , Plantas/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA