Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurocrit Care ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443709

RESUMO

BACKGROUND: Early posttraumatic brain injury (TBI) tranexamic acid (TXA) may reduce blood-brain barrier (BBB) permeability, but it is unclear if this effect is fixed regardless of dose. We hypothesized that post-TBI TXA demonstrates a dose-dependent reduction of in vivo penumbral leukocyte mobilization, BBB microvascular permeability, and enhancement of neuroclinical recovery. METHODS: CD1 male mice (n = 40) were randomly assigned to TBI by controlled cortical impact (injury [I]) or sham TBI (S), followed by intravenous bolus of either saline (placebo [P]) or TXA (15, 30, or 60 mg/kg). At 48 h, in vivo pial intravital microscopy visualized live penumbral BBB microvascular leukocytes and albumin leakage. Neuroclinical recovery was assessed by Garcia Neurological Test scores and animal weight changes at 24 h and 48 h after injury. RESULTS: I + TXA60 reduced live penumbral leukocyte rolling compared with I + P (p < 0.001) and both lower TXA doses (p = 0.017 vs. I + TXA15, p = 0.012 vs. I + TXA30). Leukocyte adhesion was infrequent and similar across groups. Only I + TXA60 significantly reduced BBB permeability compared with that in the I + P (p = 0.004) group. All TXA doses improved Garcia Test scores relative to I + P at both 24 h and 48 h (p < 0.001 vs. I + P for all at both time points). Mean 24-h body weight loss was greatest in the I + P (- 8.7 ± 1.3%) group and lowest in the I + TXA15 (- 4.4 ± 1.0%, p = 0.051 vs. I + P) group. CONCLUSIONS: Only higher TXA dosing definitively abrogates penumbral leukocyte mobilization, preserving BBB integrity post TBI. Some neuroclinical recovery is observed, even with lower TXA dosing. Better outcomes with higher dose TXA after TBI may occur secondary to blunting of leukocyte-mediated penumbral cerebrovascular inflammation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38767935

RESUMO

BACKGROUND: Traumatic brain injury (TBI) induces cognitive deficits driven by neuroinflammation and cerebral edema. The commonly used atypical antipsychotic, quetiapine (QTP), has been recently shown to improve post-TBI outcomes. We hypothesized that QTP would thereby improve animal learning and memory 2 weeks after severe TBI. METHODS: CD1 male mice (n = 35) underwent severe TBI (controlled cortical impact, injury, I) or sham craniotomy (S), followed by BID saline (P, placebo) or QTP (10 or 20 mg/kg, IP) for 2 weeks. Animals underwent Morris Water Maze (MWM) exercises to gauge spatial learning and memory. The distance and time required for swimming animals to reach the platform area (Zone 5, Z5) located in quadrant 1 (Zone 1, Z1) was calculated from digital video recordings analyzed using Ethovision software. Animal bodyweights were recorded daily and on day 14, injured cerebral hemispheres were procured for edema determination (wet-to-dry ratio). Intergroup differences were evaluated with ANOVA/Bonferroni correction (p < 0.05). RESULTS: On day 14, animal weight loss recovery was lowest in I + P compared to I + QTP20 and I + QTP10 (p ≤ 0.01 for either). Cerebral edema was greatest in I + P, and only significantly decreased in I + QTP20 (p < 0.05). Both QTP doses similarly improved spatial learning by significantly reducing latency time and travel distance to target zones (p < 0.05). In probe memory trials, only I + QTP20 and not I + QTP10 significantly favored animal reaching or crossing into target zones (p < 0.05). CONCLUSION: Post-TBI QTP reduces brain edema and improves spatial learning and memory with a potential dose dependence impact benefiting memory up to 14 days. These data suggest an unanticipated QTP benefit following brain injury that should be specifically explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA