Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3870-3885, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452217

RESUMO

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.


Assuntos
Núcleo Celular , Genoma Mitocondrial , Edição de RNA , RNA de Transferência , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Códon/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Códon de Terminação/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Código Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
RNA ; 28(7): 993-1012, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470233

RESUMO

Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.


Assuntos
Trypanosoma brucei brucei , Trypanosoma cruzi , Animais , Mamíferos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA/metabolismo , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Transcriptoma , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
3.
BMC Genomics ; 24(1): 471, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605127

RESUMO

BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.


Assuntos
Trypanosomatina , Animais , Trypanosomatina/genética , Tamanho do Genoma , Aclimatação , Agricultura , Aneuploidia
4.
Nucleic Acids Res ; 49(6): 3354-3370, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660779

RESUMO

Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.


Assuntos
Genoma de Protozoário , Edição de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Trypanosomatina/genética , Filogenia , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Transcriptoma , Trypanosomatina/metabolismo
5.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569385

RESUMO

The Podospora anserina long-term evolution experiment (PaLTEE) is the only running filamentous fungus study, which is still going on. The aim of our work is to trace the evolutionary dynamics of the accumulation of mutations in the genomes of eight haploid populations of P. anserina. The results of the genome-wide analysis of all of the lineages, performed 8 years after the start of the PaLTEE, are presented. Data analysis detected 312 single nucleotide polymorphisms (SNPs) and 39 short insertion-deletion mutations (indels) in total. There was a clear trend towards a linear increase in the number of SNPs depending on the experiment duration. Among 312 SNPs, 153 were fixed in the coding regions of P. anserina genome. Relatively few synonymous mutations were found, exactly 38; 42 were classified as nonsense mutations; 72 were assigned to missense mutations. In addition, 21 out of 39 indels identified were also localized in coding regions. Here, we also report the detection of parallel evolution at the paralog level in the P. anserina model system. Parallelism in evolution at the level of protein functions also occurs. The latter is especially true for various transcription factors, which may indicate selection leading to optimization of the wide range of cellular processes under experimental conditions.

6.
Nucleic Acids Res ; 46(2): 765-781, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29220521

RESUMO

RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.


Assuntos
Mitocôndrias/genética , Edição de RNA , RNA Mitocondrial/genética , Trypanosomatina/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Genoma Mitocondrial/genética , Genoma de Protozoário/genética , Mitocôndrias/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Splicing de RNA , RNA Mitocondrial/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosomatina/metabolismo
7.
Plant J ; 91(2): 278-291, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28387959

RESUMO

Polyploidization and subsequent sub- and neofunctionalization of duplicated genes represent a major mechanism of plant genome evolution. Capsella bursa-pastoris, a widespread ruderal plant, is a recent allotetraploid and, thus, is an ideal model organism for studying early changes following polyploidization. We constructed a high-quality assembly of C. bursa-pastoris genome and a transcriptome atlas covering a broad sample of organs and developmental stages (available online at http://travadb.org/browse/Species=Cbp). We demonstrate that expression of homeologs is mostly symmetric between subgenomes, and identify a set of homeolog pairs with discordant expression. Comparison of promoters within such pairs revealed emerging asymmetry of regulatory elements. Among them there are multiple binding sites for transcription factors controlling the regulation of photosynthesis and plant development by light (PIF3, HY5) and cold stress response (CBF). These results suggest that polyploidization in C. bursa-pastoris enhanced its plasticity of response to light and temperature, and allowed substantial expansion of its distribution range.


Assuntos
Capsella/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poliploidia , Sequências Reguladoras de Ácido Nucleico , Anotação de Sequência Molecular
8.
Mol Biol Evol ; 34(6): 1492-1504, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333290

RESUMO

The genomes are folded in a complex three-dimensional (3D) structure. Some features of this organization are common for all eukaryotes, but little is known about its evolution. Here, we have studied the 3D organization and regulation of zebrafish globin gene domain and compared its organization and regulation with those of other vertebrate species. In birds and mammals, the α- and ß-globin genes are segregated into separate clusters located on different chromosomes and organized into chromatin domains of different types, whereas in cold-blooded vertebrates, including Danio rerio, α- and ß-globin genes are organized into common clusters. The major globin gene locus of Danio rerio is of particular interest as it is located in a genomic area that is syntenic in vertebrates and is controlled by a conserved enhancer. We have found that the major globin gene locus of Danio rerio is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes. These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream enhancer with the sublocus harboring globin genes of the adult type. These data are discussed in terms of evolution of linear and 3D organization of gene clusters in vertebrates.


Assuntos
Cromatina/genética , Globinas/genética , Conformação Molecular , Animais , Evolução Biológica , Aves/genética , Cromossomos/genética , Evolução Molecular , Genoma , Mamíferos/genética , Família Multigênica/genética , Peixe-Zebra/genética , alfa-Globinas/genética , Globinas beta/genética
9.
Plant J ; 88(6): 1058-1070, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27549386

RESUMO

Arabidopsis thaliana is a long established model species for plant molecular biology, genetics and genomics, and studies of A. thaliana gene function provide the basis for formulating hypotheses and designing experiments involving other plants, including economically important species. A comprehensive understanding of the A. thaliana genome and a detailed and accurate understanding of the expression of its associated genes is therefore of great importance for both fundamental research and practical applications. Such goal is reliant on the development of new genetic and genomic resources, involving new methods of data acquisition and analysis. We present here the genome-wide analysis of A. thaliana gene expression profiles across different organs and developmental stages using high-throughput transcriptome sequencing. The expression of 25 706 protein-coding genes, as well as their stability and their spatiotemporal specificity, was assessed in 79 organs and developmental stages. A search for alternative splicing events identified 37 873 previously unreported splice junctions, approximately 30% of them occurred in intergenic regions. These potentially represent novel spliced genes that are not included in the TAIR10 database. These data are housed in an open-access web-based database, TraVA (Transcriptome Variation Analysis, http://travadb.org/), which allows visualization and analysis of gene expression profiles and differential gene expression between organs and developmental stages.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transcriptoma/genética , Processamento Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Mol Biol Evol ; 32(10): 2775-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163667

RESUMO

Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics.


Assuntos
Agaricales/genética , Variação Genética , Madeira/microbiologia , Nucleotídeos/genética , Polimorfismo Genético
11.
BMC Genomics ; 16: 400, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994131

RESUMO

BACKGROUND: Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. RESULTS: We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. CONCLUSIONS: Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.


Assuntos
Ascomicetos/fisiologia , Evolução Clonal , Genoma Fúngico , Ascomicetos/classificação , Ascomicetos/genética , Evolução Molecular , Filogenia , Reprodução Assexuada , Análise de Sequência de DNA , Especificidade da Espécie
12.
Trends Parasitol ; 40(2): 96-99, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065790

RESUMO

The number of sequenced trypanosomatid genomes has reached a critical point so that they are now available for almost all genera and subgenera. Based on this, we inferred a phylogenomic tree and propose it as a framework to study trait evolution together with some examples of how to do it.


Assuntos
Trypanosomatina , Filogenia , Trypanosomatina/genética
13.
Trop Med Infect Dis ; 8(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37624322

RESUMO

Instability is an intriguing characteristic of many protist genomes, and trypanosomatids are not an exception in this respect. Some regions of trypanosomatid genomes evolve fast. For instance, the trypanosomatid mitochondrial (kinetoplast) genome consists of fairly conserved maxicircle and minicircle molecules that can, nevertheless, possess high nucleotide substitution rates between closely related strains. Recent experiments have demonstrated that rapid laboratory evolution can result in the non-functionality of multiple genes of kinetoplast genomes due to the accumulation of mutations or loss of critical genomic components. An example of a loss of critical components is the reported loss of entire minicircle classes in Leishmania tarentolae during laboratory cultivation, which results in an inability to generate some correctly encoded genes. In the current work, we estimated the evolutionary rates of mitochondrial and nuclear genome regions of multiple natural Leishmania spp. We analyzed synonymous and non-synonymous substitutions and, rather unexpectedly, found that the coding regions of kinetoplast maxicircles are among the most variable regions of both genomes. In addition, we demonstrate that synonymous substitutions greatly predominate among maxicircle coding regions and that most maxicircle genes show signs of purifying selection. These results imply that maxicircles in natural Leishmania populations remain functional despite their high mutation rate.

14.
PLoS Negl Trop Dis ; 17(3): e0011145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877735

RESUMO

The evolution in Leishmania is governed by the opposite forces of clonality and sexual reproduction, with vicariance being an important factor. As such, Leishmania spp. populations may be monospecific or mixed. Leishmania turanica in Central Asia is a good model to compare these two types. In most areas, populations of L. turanica are mixed with L. gerbilli and L. major. Notably, co-infection with L. turanica in great gerbils helps L. major to withstand a break in the transmission cycle. Conversely, the populations of L. turanica in Mongolia are monospecific and geographically isolated. In this work, we compare genomes of several well-characterized strains of L. turanica originated from monospecific and mixed populations in Central Asia in order to shed light on genetic factors, which may drive evolution of these parasites in different settings. Our results illustrate that evolutionary differences between mixed and monospecific populations of L. turanica are not dramatic. On the level of large-scale genomic rearrangements, we confirmed that different genomic loci and different types of rearrangements may differentiate strains originated from mixed and monospecific populations, with genome translocations being the most prominent example. Our data suggests that L. turanica has a significantly higher level of chromosomal copy number variation between the strains compared to its sister species L. major with only one supernumerary chromosome. This suggests that L. turanica (in contrast to L. major) is in the active phase of evolutionary adaptation.


Assuntos
Leishmania , Animais , Leishmania/genética , Variações do Número de Cópias de DNA , Mongólia , Genômica , Gerbillinae/parasitologia
15.
Comput Struct Biotechnol J ; 20: 6388-6402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420151

RESUMO

The kinetoplastids are unicellular flagellates that derive their name from the 'kinetoplast', a region within their single mitochondrion harboring its organellar genome of high DNA content, called kinetoplast (k) DNA. Some protein products of this mitochondrial genome are encoded as cryptogenes; their transcripts require editing to generate an open reading frame. This happens through RNA editing, whereby small regulatory guide (g)RNAs direct the proper insertion and deletion of one or more uridines at each editing site within specific transcript regions. An accurate perspective of the kDNA expansion and evolution of their unique uridine insertion/deletion editing across kinetoplastids has been difficult to achieve. Here, we resolved the kDNA structure and editing patterns in the early-branching kinetoplastid Trypanoplasma borreli and compare them with those of the well-studied trypanosomatids. We find that its kDNA consists of circular molecules of about 42 kb that harbor the rRNA and protein-coding genes, and 17 different contigs of approximately 70 kb carrying an average of 23 putative gRNA loci per contig. These contigs may be linear molecules, as they contain repetitive termini. Our analysis uncovered a putative gRNA population with unique length and sequence parameters that is massive relative to the editing needs of this parasite. We validated or determined the sequence identity of four edited mRNAs, including one coding for ATP synthase 6 that was previously thought to be missing. We utilized computational methods to show that the T. borreli transcriptome includes a substantial number of transcripts with inconsistent editing patterns, apparently products of non-canonical editing. This species utilizes the most extensive uridine deletion compared to other studied kinetoplastids to enforce amino acid conservation of cryptogene products, although insertions still remain more frequent. Finally, in three tested mitochondrial transcriptomes of kinetoplastids, uridine deletions are more common in the raw mitochondrial reads than aligned to the fully edited, translationally competent mRNAs. We conclude that the organization of kDNA across known kinetoplastids represents variations on partitioned coding and repetitive regions of circular molecules encoding mRNAs and rRNAs, while gRNA loci are positioned on a highly unstable population of molecules that differ in relative abundance across strains. Likewise, while all kinetoplastids possess conserved machinery performing RNA editing of the uridine insertion/deletion type, its output parameters are species-specific.

16.
mSphere ; 7(4): e0033522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943162

RESUMO

Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCE Leishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.


Assuntos
Leishmania , Leishmaniose , Leishmaniavirus , Proteínas do Capsídeo , Humanos , Leishmania/genética , Leishmaniose/parasitologia , Leishmaniavirus/genética
17.
PLoS Negl Trop Dis ; 16(6): e0010510, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749562

RESUMO

Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.


Assuntos
Leishmania guyanensis , Leishmaniose Cutânea , Parasitos , Animais , Ciclo Celular , Leishmaniavirus , Lipídeos , Camundongos , Fosfatidato Fosfatase/genética
18.
Pathogens ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466586

RESUMO

A recently redescribed two-flagellar trypanosomatid Vickermania ingenoplastis is insensitive to the classical inhibitors of respiration and thrives under anaerobic conditions. Using genomic and transcriptomic data, we analyzed its genes of the core metabolism and documented that subunits of the mitochondrial respiratory complexes III and IV are ablated, while those of complexes I, II, and V are all present, along with an alternative oxidase. This explains the previously reported conversion of glucose to acetate and succinate by aerobic fermentation. Glycolytic pyruvate is metabolized to acetate and ethanol by pyruvate dismutation, whereby a unique type of alcohol dehydrogenase (shared only with Phytomonas spp.) processes an excess of reducing equivalents formed under anaerobic conditions, leading to the formation of ethanol. Succinate (formed to maintain the glycosomal redox balance) is converted to propionate by a cyclic process involving three enzymes of the mitochondrial methyl-malonyl-CoA pathway, via a cyclic process, which results in the formation of additional ATP. The unusual structure of the V. ingenoplastis genome and its similarity with that of Phytomonas spp. imply their relatedness or convergent evolution. Nevertheless, a critical difference between these two trypanosomatids is that the former has significantly increased its genome size by gene duplications, while the latter streamlined its genome.

19.
Front Plant Sci ; 12: 612382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815435

RESUMO

Common buckwheat (Fagopyrum esculentum) is an important non-cereal grain crop and a prospective component of functional food. Despite this, the genomic resources for this species and for the whole family Polygonaceae, to which it belongs, are scarce. Here, we report the assembly of the buckwheat genome using long-read technology and a high-resolution expression atlas including 46 organs and developmental stages. We found that the buckwheat genome has an extremely high content of transposable elements, including several classes of recently (0.5-1 Mya) multiplied TEs ("transposon burst") and gradually accumulated TEs. The difference in TE content is a major factor contributing to the three-fold increase in the genome size of F. esculentum compared with its sister species F. tataricum. Moreover, we detected the differences in TE content between the wild ancestral subspecies F. esculentum ssp. ancestrale and buckwheat cultivars, suggesting that TE activity accompanied buckwheat domestication. Expression profiling allowed us to test a hypothesis about the genetic control of petaloidy of tepals in buckwheat. We showed that it is not mediated by B-class gene activity, in contrast to the prediction from the ABC model. Based on a survey of expression profiles and phylogenetic analysis, we identified the MYB family transcription factor gene tr_18111 as a potential candidate for the determination of conical cells in buckwheat petaloid tepals. The information on expression patterns has been integrated into the publicly available database TraVA: http://travadb.org/browse/Species=Fesc/. The improved genome assembly and transcriptomic resources will enable research on buckwheat, including practical applications.

20.
Viruses ; 13(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835111

RESUMO

Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.


Assuntos
Proteínas do Capsídeo/genética , Leishmania/virologia , Leishmaniose/virologia , Vírus de RNA/genética , RNA Viral/análise , RNA Polimerase Dependente de RNA/genética , Animais , Humanos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA