Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Arch Virol ; 161(12): 3345-3353, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27581808

RESUMO

Here, we report the circulation of highly related virulent Newcastle disease viruses (NDV) in Bulgaria and Ukraine from 2002 until 2013. All of these NDV isolates have the same virulence-associated cleavage site ("113RQKR↓F117"), and selected ones have intracerebral pathogenicity index values ranging from 1.61 to 1.96. These isolates are most closely related to viruses circulating in Eastern Europe, followed by viruses isolated in Asia during the same period of time. Interestingly, the majority of the viruses were isolated from backyard poultry, suggesting the possibility of a "domestic" or "urban" cycle of maintenance. The molecular characterization of the nucleotide sequence of the complete fusion protein gene of the studied viruses suggests continued circulation of virulent NDV of sub-genotype VIId in Eastern Europe, with occasional introductions from Asia. Furthermore, the high level of genetic similarity among those isolates suggests that the NDV isolates of sub-genotype VIId from Bulgaria and Ukraine may have been part of a broader epizootic process in Eastern Europe rather than separate introductions from Asia or Africa. The continuous monitoring of backyard poultry flocks for the presence of circulating virulent NDV strains will allow early identification of Newcastle disease outbreaks.


Assuntos
Galinhas/virologia , Genótipo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , Bulgária/epidemiologia , Análise por Conglomerados , Epidemiologia Molecular , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Análise de Sequência de DNA , Homologia de Sequência , Ucrânia/epidemiologia , Proteínas Virais de Fusão/genética
2.
Appl Environ Microbiol ; 80(17): 5427-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973063

RESUMO

Despite the existence of 10 avian paramyxovirus (APMV) serotypes, very little is known about the distribution, host species, and ecological factors affecting virus transmission. To better understand the relationship among these factors, we conducted APMV wild bird surveillance in regions of Ukraine suspected of being intercontinental (north to south and east to west) flyways. Surveillance for APMV was conducted in 6,735 wild birds representing 86 species and 8 different orders during 2006 to 2011 through different seasons. Twenty viruses were isolated and subsequently identified as APMV-1 (n = 9), APMV-4 (n = 4), APMV-6 (n = 3), and APMV-7 (n = 4). The highest isolation rate occurred during the autumn migration (0.61%), with viruses isolated from mallards, teals, dunlins, and a wigeon. The rate of isolation was lower during winter (December to March) (0.32%), with viruses isolated from ruddy shelducks, mallards, white-fronted geese, and a starling. During spring migration, nesting, and postnesting (April to August) no APMV strains were isolated out of 1,984 samples tested. Sequencing and phylogenetic analysis of four APMV-1 and two APMV-4 viruses showed that one APMV-1 virus belonging to class 1 was epidemiologically linked to viruses from China, three class II APMV-1 viruses were epidemiologically connected with viruses from Nigeria and Luxembourg, and one APMV-4 virus was related to goose viruses from Egypt. In summary, we have identified the wild bird species most likely to be infected with APMV, and our data support possible intercontinental transmission of APMVs by wild birds.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/isolamento & purificação , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Aves/virologia , Monitoramento Epidemiológico , Animais , Avulavirus/classificação , Avulavirus/genética , Infecções por Avulavirus/epidemiologia , Infecções por Avulavirus/transmissão , Infecções por Avulavirus/virologia , Doenças das Aves/virologia , Mar Negro , Análise por Conglomerados , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Estações do Ano , Análise de Sequência de DNA , Ucrânia/epidemiologia
3.
Microbiol Resour Announc ; 12(6): e0019723, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37255430

RESUMO

We report the complete genome sequence of an avian orthoavulavirus 13 strain, isolated from a white-fronted goose in the Odesa region of Ukraine in 2013. The detection of avian orthoavulavirus 13 in Ukraine confirms that the geographic distribution of this virus extends beyond Asia.

4.
Front Vet Sci ; 10: 1026296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742982

RESUMO

Newcastle disease virus (NDV) infects a wide range of bird species worldwide and is of importance to the poultry industry. Although certain virus genotypes are clearly associated with wild bird species, the role of those species in the movement of viruses and the migratory routes they follow is still unclear. In this study, we performed a phylogenetic analysis of nineteen NDV sequences that were identified among 21,924 samples collected from wild and synanthropic birds from different regions of Ukraine from 2006 to 2015 and compared them with isolates from other continents. In synanthropic birds, NDV strains of genotype II, VI, VII, and XXI of class II were detected. The fusion gene sequences of these strains were similar to strains detected in birds from different geographical regions of Europe and Asia. However, it is noteworthy to mention the isolation of vaccine viruses from synanthropic birds, suggesting the possibility of their role in viral transmission from vaccinated poultry to wild birds, which may lead to the further spreading of vaccine viruses into other regions during wild bird migration. Moreover, here we present the first publicly available complete NDV F gene from a crow (genus Corvus). Additionally, our phylogenetic results indicated a possible connection of Ukrainian NDV isolates with genotype XXI strains circulating in Kazakhstan. Among strains from wild birds, NDVs of genotype 1 of class I and genotype I of class II were detected. The phylogenetic analysis highlighted the possible exchange of these NDV strains between wild waterfowl from the Azov-Black Sea region of Ukraine and waterfowl from different continents, including Europe, Asia, and Africa.

5.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992408

RESUMO

Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as: APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health's capacity to characterize APMV virulence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was extracted and amplified using a multiplex tiling primer approach to specifically capture full-length APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F) proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence, annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution and circulation in this understudied but important critical region for Eurasia.


Assuntos
Avulavirus , Vírus da Doença de Newcastle , Animais , Ucrânia/epidemiologia , Filogenia , Animais Selvagens , Aves
6.
Vaccines (Basel) ; 11(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37514961

RESUMO

African swine fever (ASF) is a viral disease, endemic to Africa, that causes high mortality when introduced into domestic pig populations. Since the emergence of p72-genotype II African swine fever virus (ASFV) in Georgia in 2007, an ASF epidemic has been spreading across Europe and many countries in Asia. The epidemic first reached Ukraine in 2012. To better understand the dynamics of spread of ASF in Ukraine, we analyzed spatial and temporal outbreak data reported in Ukraine between 2012 and mid-2023. The highest numbers of outbreaks were reported in 2017 (N = 163) and 2018 (N = 145), with overall peak numbers of ASF outbreaks reported in August (domestic pigs) and January (wild boars). While cases were reported from most of Ukraine, we found a directional spread from the eastern and northern borders towards the western and southern regions of Ukraine. Many of the early outbreaks (before 2016) were adjacent to the border, which is again true for more recent outbreaks in wild boar, but not for recent outbreaks in domestic pigs. Outbreaks prior to 2016 also occurred predominantly in areas with a below average domestic pig density. This new analysis suggests that wild boars may have played an important role in the introduction and early spread of ASF in Ukraine. However, in later years, the dynamic suggests human activity as the predominant driver of spread and a separation of ASF epizootics between domestic pigs and in wild boars. The decline in outbreaks since 2019 suggests that the implemented mitigation strategies are effective, even though long-term control or eradication remain challenging and will require continued intensive surveillance of ASF outbreak patterns.

7.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632666

RESUMO

Porcine circovirus type 2 (PCV2) is responsible for a number of porcine circovirus-associated diseases (PCVAD) that can severely impact domestic pig herds. For a non-enveloped virus with a small genome (1.7 kb ssDNA), PCV2 is remarkably diverse, with eight genotypes (a-h). New genotypes of PCV2 can spread through the migration of wild boar, which are thought to infect domestic pigs and spread further through the domestic pig trade. Despite a large swine population, the diversity of PCV2 genotypes in Ukraine has been under-sampled, with few PCV2 genome sequences reported in the past decade. To gain a deeper understanding of PCV2 genotype diversity in Ukraine, samples of blood serum were collected from wild boars (n = 107) that were hunted in Ukraine during the November-December 2012 hunting season. We found 34/107 (31.8%) prevalence of PCV2 by diagnostic PCR. For domestic pigs, liver samples (n = 16) were collected from a commercial market near Kharkiv in 2019, of which 6 out of 16 (37%) samples were positive for PCV2. We sequenced the genotyping locus ORF2, a gene encoding the PCV2 viral capsid (Cap), for 11 wild boar and six domestic pig samples in Ukraine using an Oxford Nanopore MinION device. Of 17 samples with resolved genotypes, the PCV2 genotype b was the most common in wild boar samples (10 out of 11, 91%), while the domestic pigs were infected with genotypes b and d. We also detected genotype b/d and b/a co-infections in wild boars and domestic pigs, respectively, and for the first time in Ukraine we detected genotype f in a wild boar from Poltava. Building a maximum-likelihood phylogeny, we identified a sublineage of PCV2 genotype b infections in both wild and domestic swine, suggesting a possible epizootic cluster and an ecological interaction between wild boar and domestic pig populations in northeastern Ukraine.


Assuntos
Circovirus , Doenças dos Suínos , Animais , Circovirus/genética , Variação Genética , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Ucrânia/epidemiologia
9.
Virus Res ; 302: 198473, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118360

RESUMO

The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.


Assuntos
COVID-19/transmissão , Pandemias , SARS-CoV-2/fisiologia , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Saúde Única , SARS-CoV-2/genética , Zoonoses
10.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707337

RESUMO

The complete genome sequence of Brucella abortus 68, isolated from an aborted sheep fetus in Luhansk, Ukraine, was assembled using Nanopore sequences. Two circular chromosomes totaling 3,281,317 bp (N 50, 2,124,943 bp) comprised the complete genome sequence. The strain encodes the fosfomycin antibiotic resistance gene fosX, highlighting the risk of cross-species livestock and human infection.

11.
Vet Med Sci ; 7(5): 1786-1799, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34327865

RESUMO

A Knowledge, Attitudes, and Practices (KAP) questionnaire was designed to collect information on farmers' knowledge of ASF and their practices surrounding that could impact the spread of the disease. The questionnaire was distributed, and data collected, from 233 backyard farmers from five selected Oblasts (Rivne, Kharkiv, Odessa, Zakarpattia and Kiev). Kruskal-Wallis tests were conducted to identify factors that could influence knowledge, and Dunn tests were performed to determine differences between groups when the Kruskal-Wallis tests were significant. Spearman tests were carried out to explore the association between knowledge and risky practices. Results show that comprehensive knowledge on ASF is not common in backyard farmers and that risky practices that influence the spread of ASF are regularly performed. Of the respondents, 47% felt well-informed about how ASF can be transmitted and 31.8% felt confident about recognizing clinical signs of ASF. The independent variable "Oblast" was identified as a significant factor (p = 0.0015) associated with differences in knowledge on clinical signs. We demonstrated statistically significant differences of knowledge between backyard farmers from different Oblasts. Knowledge of preventive measures was positively correlated with risky handling practices related to edible pork products (p = 0.0053) and non-edible pork products (p = 0.0417). In conclusion, our results show that backyard farmers have knowledge gaps on ASF and practice various risky behaviours that might favour the spread of the disease in Ukraine. There are regional differences in ASF knowledge and risky practices that should be taken into consideration in future evidence-based ASF prevention and control programs, including public awareness activities.


Assuntos
Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/prevenção & controle , Criação de Animais Domésticos/métodos , Animais , Fazendeiros , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Inquéritos e Questionários , Suínos , Ucrânia
12.
Front Vet Sci ; 8: 689375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350229

RESUMO

Some European countries have successfully implemented country-specific control programs (CPs) for infectious cattle diseases that are not regulated or are regulated only to a limited extent at the European Union (EU) level. Examples of such diseases include bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR), and Johne's disease (JD). The CPs vary between countries in the design and quality of collected data as well as methods used to detect infection and estimate prevalence or probability of freedom from infection. Differences in disease status between countries and non-standardized approaches to assess freedom from infection pose a risk for countries with CPs for non-regulated diseases as infected animals may influence the progress of the disease control or eradication program. The implementation of output-based standards allows estimation and comparison of the probability of freedom for non-regulated cattle diseases in European countries. The aim of the current study was to assess the existence and quality of data that could be used for estimating freedom from infection in European countries. The online data collection tool was sent to 32 countries participating in the SOUND control COST Action and was completed by 24 countries. Data on cattle demographics and data from CPs of IBR and BVD exist in more than 50% of the response countries. However, data describing risk factors and CP of JD was reported as existing in <25% of the countries. The overall quality of data in the sections on demographics and CPs of IBR and BVD were evaluated as "good", but risk factors and JD data were mostly evaluated as "fair." Data quality was considered less good mainly due to two quality criteria: accessibility and accuracy. The results of this study show that the quantity and quality of data about cattle populations and CPs are relatively similar in many surveyed countries. The outcome of this work provides an overview of the current situation in the European countries regarding data on EU non-regulated cattle diseases and will further assist in the development and implementation of output-based standards.

13.
Front Vet Sci ; 8: 688078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395571

RESUMO

The COST action "Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control)," aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min-max: 1-13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.

14.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273001

RESUMO

The complete genome of Salmonella enterica subsp. enterica serovar Kottbus strain Kharkiv (serogroup C2-C3), which was isolated from a commercial pork production facility in Kharkiv, Ukraine, was assembled using long-read Nanopore sequences. A single circular contig (4,799,045 bp) comprised a complete chromosome encoding antibiotic resistance, highlighting the risk of cross-species livestock and human infection.

15.
J Vet Res ; 64(1): 63-71, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258801

RESUMO

INTRODUCTION: Tularaemia is a zoonotic disease caused by the gram-negative bacterium Francisella tularensis, which is endemic to Ukraine. The aim of this work was to provide screening of different field samples (rodent tails, ticks, pellets, water, and hay) to obtain an actual picture of the tularaemia epizootic situation in the Kharkiv, Dnipropetrovsk, and Mykolaiv oblasts. MATERIAL AND METHODS: Samples were collected using the flag method (for ticks) and break-back traps (for rodents). Also, hay, water and owl pellets were collected for study. The F. tularensis genetic material in samples was detected using a 16S qPCR. RESULTS: It was found that in Kharkiv oblast, 23% of collected samples were positive for F. tularensis, in Dnipropetrovsk oblast 1.9%, and in Mykolaiv oblast 0.4%. CONCLUSION: Among the sample types, 34.7% of ticks, 1.8% of rodents, and 36.4% of pellets were positive for F. tularensis. The most frequent carriers of F. tularensis were the D. reticulatus and I. ricinus ticks (74.2% and 29.3%, respectively, of positive results).

16.
Pathogens ; 8(2)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185670

RESUMO

Genotypic variation in Beijing lineages of Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), has been associated with hyper virulence and the spread of extensively and multiple drug (X/MDR) resistant MTB strains in Eastern Europe, Central Asia, and East Asia. The clinical outcomes of 215 new cases of TB among the population of the Kharkiv region of Eastern Ukraine were analyzed to uncover factors associated with severe infection. Infecting MTB strains were profiled by 5 locus exact tandem repeats (ETRs) and 15 locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) genotyping. Among diverse MTB genotypes discovered in Ukraine, the Beijing genotype (MIRU-VNTR 42425) was significantly associated with risk factors for severe outcomes of disease in the study population, including TB/HIV co-infection and treatment failure. Strain replacement (superinfection) was observed in 10 patients, suggesting repeated exposure to novel MTB strains in hospital or community settings. Inclusion of MTB genotyping data may identify at-risk patients and improve treatment adherence to prevent X/MDR development for effective public health response against tuberculosis in Ukraine.

17.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624164

RESUMO

Here, we report the complete genome sequence of an African swine fever (ASF) virus (ASFV/Kyiv/2016/131) isolated from the spleen of a domestic pig in Ukraine with a lethal case of African swine fever. Using only long-read Nanopore sequences, we assembled a full-length genome of 191,911 base pairs in a single contig.

18.
Genome Announc ; 4(4)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27469958

RESUMO

Here, we report the complete genome sequence of a virus of a putative new serotype of avian paramyxovirus (APMV). The virus was isolated from a white-fronted goose in Ukraine in 2011 and designated white-fronted goose/Ukraine/Askania-Nova/48-15-02/2011. The genomic characterization of the isolate suggests that it represents the novel avian paramyxovirus group APMV 13.

19.
PLoS One ; 11(9): e0162484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626272

RESUMO

Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.


Assuntos
Animais Selvagens , Aves/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Filogenia
20.
PLoS One ; 8(3): e58705, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527009

RESUMO

Recent studies have shown that bovine leukemia virus (BLV) sequences can be classified into seven distinct genotypes based on full gp51 sequence. This classification was based on available sequence data that mainly represented the BLV population that is circulating in cattle from the US and South America. In order to aid with a global perspective inclusion of data from Eastern Europe is required. In this study we examined 44 BLV isolates from different geographical regions of Poland, Belarus, Ukraine, and Russia. Phylogenetic analysis based on a 444bp fragment of env gene revealed that most of isolates belonged to genotypes 4 and 7. Furthermore, we confirmed the existence of a new genotype, genotype 8, which was highly supported by phylogenetic computations. A significant number of amino acid substitutions were found in the sequences of the studied Eastern European isolates, of which 71% have not been described previously. The substitutions encompassed mainly the C-part of the CD4+ epitope, zinc binding peptide region, CD8+ T cell epitope, and overlapping linear epitope E. These observations highlight the use of sequence data to both elucidate phylogenetic relationships and the potential effect on serological detection of geographically diverse isolates.


Assuntos
Vírus da Leucemia Bovina/genética , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Bovinos , Leucose Enzoótica Bovina/virologia , Epitopos/genética , Europa Oriental , Genes env , Variação Genética , Genótipo , Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA