Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123928

RESUMO

We present a method for improving the amplitude and angular error of inductive position sensors, by advancing the design of receiver coil systems with multiple windings on two layers of a printed circuit board. Multiple phase-shifted windings are connected in series, resulting in an increased amplitude of the induced voltage while decreasing the angular error of the sensor. The amplitude increase for a specific number of windings can be predicted in closed form. Windings are placed electrically in series by means of a differential connection structure, without adversely affecting the signal quality while requiring a minimal amount of space in the layout. Further, we introduce a receiver coil centerline function which specifically enables dense, space-constrained designs. It allows for maximization of the number of possible coil windings while minimizing the impact on angular error. This compromise can be fine-tuned freely with a shape parameter. The application to a typical rotary encoder design for motor control applications with five periods is presented as an example and analyzed in detail by 3D finite-element simulation of 18 different variants, varying both the number of windings and the type of centerline functions. The best peak-to-peak angular error achieved in the examples is smaller than 0.1° electrically (0.02° mechanically, periodicity 5) under nominal tolerance conditions, in addition to an amplitude increase of more than 170% compared to a conventional design which exhibits more than twice the angular error. Amplitude gains of more than 270% are achieved at the expense of increased angular error.

2.
Biomacromolecules ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047737

RESUMO

A recent study unveiled the potential of acrylamide-based stimulus-responsive hydrogels for volatile organic compound detection in gaseous environments. However, for gas sensing, a large surface area, that is, a highly porous material, offering many adsorption sites is crucial. The large humidity variation in the gaseous environment constitutes a significant challenge for preserving an initially porous structure, as the pores tend to be unstable and irreversibly collapse. Therefore, the present investigation focuses on enhancing the porosity of smart PNiPAAm hydrogels under the conditions of a gaseous environment and the preservation of the structural integrity for long-term use. We have studied the influence of polyethylene glycol (PEG) as a porogen and the application of different drying methods and posttreatment. The investigations lead to the conclusion that only the combination of PEG addition, freeze-drying, and subsequent conditioning in high relative humidity enables a long-term stable formation of a porous surface and inner structure of the material. The significantly enhanced swelling response in a gaseous environment and in the test gas acetone is confirmed by gravimetric experiments of bulk samples and continuous measurements of thin films on piezoresistive pressure sensor chips. These measurements are furthermore complemented by an in-depth analysis of the morphology and microstructure. While the study was conducted for PNiPAAm, the insights and developed processes are general in nature and can be applied for porosity engineering of other smart hydrogel materials for VOC detection in gaseous environments.

3.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298155

RESUMO

Many angle or position sensors rank among the inductive encoders, although their sensing principle is different. The sensor design investigated in this paper is based on coupled coils, whereas the information about the position angle is modulated on the induced voltage, measured at the receiving coils. Unfortunately, no closed solution for most of the physical quantities exists, since this principle is based on eddy currents, which are rather complex to calculate for the given geometry. Consequently, the common way is to calculate the sensor quantities by a 3D finite-element (FE) simulation. However, this leads in most cases to a high time and computational effort. To overcome the limitations with respect to computational resources, a novel method is presented to reduce simulation effort and calculate regression models, which can even replace simulations. In the following investigations, D-optimal designs are used-a subdomain in the field of statistical design of experiments-and combined with a numerical implementation of Faraday's law, in order to calculate the induced voltages afterwards from simulated magnetic field data. With this method, the sensor signals can be calculated for multiple angle positions from one simulated position by shifting the integration boundaries. Hence, simulation time is significantly reduced for a full period. The regression models obtained by this method, can predict the Tx-coil inductance, induced Rx-voltage amplitude and angular error in dependency of geometric design parameters.

4.
Infect Immun ; 87(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285248

RESUMO

Actinobacillus pleuropneumoniae is a capnophilic pathogen of the porcine respiratory tract lacking enzymes of the oxidative branch of the tricarboxylic acid (TCA) cycle. We previously claimed that A. pleuropneumoniae instead uses the reductive branch in order to generate energy and metabolites. Here, we show that bicarbonate and oxaloacetate supported anaerobic growth of A. pleuropneumoniae Isotope mass spectrometry revealed heterotrophic fixation of carbon from stable isotope-labeled bicarbonate by A. pleuropneumoniae, which was confirmed by nano-scale secondary ion mass spectrometry at a single-cell level. By gas chromatography-combustion-isotope ratio mass spectrometry we could further show that the labeled carbon atom is mainly incorporated into the amino acids aspartate and lysine, which are derived from the TCA metabolite oxaloacetate. We therefore suggest that carbon fixation occurs at the interface of glycolysis and the reductive branch of the TCA cycle. The heme precursor δ-aminolevulinic acid supported growth of A. pleuropneumoniae, similar to bicarbonate, implying that anaplerotic carbon fixation is needed for heme synthesis. However, deletion of potential carbon-fixing enzymes, including PEP-carboxylase (PEPC), PEP-carboxykinase (PEPCK), malic enzyme, and oxaloacetate decarboxylase, as well as various combinations thereof, did not affect carbon fixation. Interestingly, generation of a deletion mutant lacking all four enzymes was not possible, suggesting that carbon fixation in A. pleuropneumoniae is an essential metabolic pathway controlled by a redundant set of enzymes. A double deletion mutant lacking PEPC and PEPCK was not impaired in carbon fixation in vitro but showed reduction of virulence in a pig infection model.


Assuntos
Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae , Ciclo do Carbono/fisiologia , Pleuropneumonia/metabolismo , Virulência/fisiologia , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Modelos Animais de Doenças , Suínos
5.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857259

RESUMO

A fast and reliable determination of the ethanol concentration is essential in the analysis of alcoholic beverages. However, different factors like pH value or salt concentration can influence the ethanol measurement. Furthermore, analytical figures of merit for the alcohol sensor, such as limit of detection, sensitivity and measurement uncertainty, are necessary for the application. In this paper, a detailed sensor characterization of a novel sensor based on ethanol-sensitive poly acrylamide hydrogels will be presented. The resulting swelling pressure of the hydrogel was transformed via a piezoresistive pressure sensor into a measurable output voltage. These kinds of sensors can be used over a large measuring range, up to 50 vol% ethanol and more, with a high sensitivity. In the range from pH 7.4 to 4, the pH value had no influence on the sensor signal. Higher salt concentrations can slightly influence the measurement. The detection limit amounts to 0.06⁻0.65 vol% ethanol. The concentration of a vodka sample was determined with a sufficient measuring uncertainty.

6.
Sensors (Basel) ; 19(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823557

RESUMO

Ammonia is an essential key compound in the chemical industry. However, excessively high ammonia concentrations can be harmful to the environment. Sensors for the detection of ammonia are therefore particularly important for environmental analysis. In this article, a novel hydrogel-based piezoresistive ammonia sensor is presented. In aqueous solution, ammonia reacts as a base. This alkaline pH change can be detected with stimuli-sensitive hydrogels. For such an application, highly sensitive hydrogels in the alkaline range with sufficient mechanical stability for the sensor application has to be developed. These conditions are fulfilled by the presented hydrogel system based on acrylic acid (AAc) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The hydrogel composition has a significant influence on the swelling behavior of the gel. Furthermore, the hydrogel swelling in ammonia solutions was tested and a detection limit in the range of 1 mmol/L ammonia depending on the buffer solution was determined. Ammonia-sensitive hydrogels can be used multiple times due to the repeatable swelling of the gel over several swelling cycles. To generate a measurable output voltage, the swelling pressure of ammonia-sensitive hydrogels were detected by using piezoresistive pressure sensors. All results of the free hydrogel swelling were verified in the sensor application. This low-cost ammonia sensor with a high sensitivity could be interesting for industrial chemical and biotechnological applications.

7.
Sensors (Basel) ; 19(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252618

RESUMO

Urea is used in a wide variety of industrial applications such as the production of fertilizers. Furthermore, urea as a metabolic product is an important indicator in biomedical diagnostics. For these applications, reliable urea sensors are essential. In this work, we present a novel hydrogel-based biosensor for the detection of urea. The hydrolysis of urea by the enzyme urease leads to an alkaline pH change, which is detected with a pH-sensitive poly(acrylic acid-co-dimethylaminoethyl methacrylate) hydrogel. For this purpose, the enzyme is physically entrapped during polymerization. This enzyme-hydrogel system shows a large sensitivity in the range from 1 mmol/L up to 20 mmol/L urea with a high long-term stability over at least eight weeks. Furthermore, this urea-sensitive hydrogel is highly selective to urea in comparison to similar species like thiourea or N-methylurea. For sensory applications, the swelling pressure of this hydrogel system is transformed via a piezoresistive pressure sensor into a measurable output voltage. In this way, the basic principle of hydrogel-based piezoresistive urea biosensors was demonstrated.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Ureia/isolamento & purificação , Urease/química , Resinas Acrílicas/química , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Compostos de Metilureia/química , Compostos de Metilureia/isolamento & purificação , Tioureia/química , Tioureia/isolamento & purificação , Ureia/química
8.
Sensors (Basel) ; 19(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871145

RESUMO

The in-line monitoring of ethanol concentration in liquids is a crucial part of process monitoring in breweries and distilleries. Current methods are based on infrared spectroscopy, which is time-consuming and costly, making these methods unaffordable for small and middle-sized companies. To overcome these problems, we presented a small, compact, and cost-effective sensing method for the ethanol content, based on a nanostructured, plasmonically active sensor substrate. The sensor substrate is coated with an ethanol-sensitive hydrogel, based on polyacrylamide and bisacrylamide, which induces a change in the refractive index of the substrate surface. The swelling and shrinking of such hydrogels offer a means to measure the ethanol content in liquids, which can be determined in a simple transmittance setup. In our study, we demonstrated the capability of the sensor principle for the detection of ethanol content ranging from 0 to 30 vol% ethanol. Furthermore, we determined the response time of the sensor substrate to be 5.2 min, which shows an improvement by a factor of four compared to other hydrogel-based sensing methods. Finally, initial results for the sensor's lifetime are presented.

9.
Mamm Genome ; 25(3-4): 180-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24445419

RESUMO

Actinobacillus pleuropneumoniae is among the most important pathogens worldwide in pig production. The agent can cause severe economic losses due to decreased performance, acute or chronic pleuropneumonia and an increased incidence of death. Therapeutics cannot be used in a sustainable manner, and vaccination is not always available, but discovering more about host defence and disease mechanisms might lead to new methods of prophylaxis. The aim of the present study was to detect quantitative trait loci (QTL) associated with resistance/susceptibility to A. pleuropneumoniae. Under controlled conditions, 170 F2 animals of a Hampshire/Landrace family, with known differences in founder populations regarding A. pleuropneumoniae resistance, were challenged with an A. pleuropneumoniae serotype 7 aerosol followed by a detailed clinical, radiographic, ultrasonographic, pathological and bacteriological examination. F2 pigs were genotyped with 159 microsatellite markers. Significant QTL were identified on Sus scrofa chromosomes (SSC) 2, 6, 12, 13, 16, 17 and 18. They explained 6-22% of phenotypic variance. One QTL on SSC2 reached significance on a genome-wide level for five associated phenotypic traits. A multiple regression analysis revealed a combinatory effect of markers SWR345 (SSC2) and S0143 (SSC12) on Respiratory Health Score, Clinical Score and the occurrence of death. The results indicate the genetic background of A. pleuropneumoniae resistance in swine and provide new insights into the genetic architecture of resistance/susceptibility to porcine pleuropneumonia. The results will be helpful in identifying the underlying genes and mechanisms.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Resistência à Doença/genética , Locos de Características Quantitativas/genética , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/genética , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/patologia , Animais , Mapeamento Cromossômico/veterinária , Resistência à Doença/imunologia , Genótipo , Repetições de Microssatélites/genética , Análise de Regressão , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/patologia
10.
Mamm Genome ; 25(11-12): 600-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25118633

RESUMO

Actinobacillus (A.) pleuropneumoniae is among the most important pathogens in pig. The agent causes severe economic losses due to decreased performance, the occurrence of acute or chronic pleuropneumonia, and an increase in death incidence. Since therapeutics cannot be used in a sustainable manner, and vaccination is not always available, new prophylactic measures are urgently needed. Recent research has provided evidence for a genetic predisposition in susceptibility to A. pleuropneumoniae in a Hampshire × German Landrace F2 family with 170 animals. The aim of the present study is to characterize the expression response in this family in order to unravel resistance and susceptibility mechanisms and to prioritize candidate genes for future fine mapping approaches. F2 pigs differed distinctly in clinical, pathological, and microbiological parameters after challenge with A. pleuropneumoniae. We monitored genome-wide gene expression from the 50 most and 50 least susceptible F2 pigs and identified 171 genes differentially expressed between these extreme phenotypes. We combined expression QTL analyses with network analyses and functional characterization using gene set enrichment analysis and identified a functional hotspot on SSC13, including 55 eQTL. The integration of the different results provides a resource for candidate prioritization for fine mapping strategies, such as TF, TFRC, RUNX1, TCN1, HP, CD14, among others.


Assuntos
Infecções por Actinobacillus/genética , Actinobacillus pleuropneumoniae/fisiologia , Locos de Características Quantitativas , Doenças dos Suínos/genética , Infecções por Actinobacillus/microbiologia , Animais , Sequência de Bases , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Masculino , Regiões Promotoras Genéticas , Sus scrofa/genética , Suínos , Doenças dos Suínos/microbiologia , Transcriptoma
11.
Int J Med Microbiol ; 304(7): 858-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25128370

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity.


Assuntos
Doença de Crohn/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/microbiologia , Paratuberculose/transmissão , Zoonoses/microbiologia , Zoonoses/transmissão , Animais , Humanos
12.
Micromachines (Basel) ; 15(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258244

RESUMO

To further improve the performance of dielectric elastomer actuaotrs (DEAs), the development of novel elastomers with enhanced electro-mechanical properties is focal for the advancement of the technology. Hence, reliable techniques to assess their electro-mechanical performance are necessary. Characterization of the actuator materials is often achieved by fabricating circular DEAs with the pre-stretch of the membrane fixed by a stiff frame. Because of this set-up, the electrode size relative to the carrier frame's dimension has an impact on actuator strain and displacement. To allow for comparable results across different studies, the influence of this effect needs to be quantified and taken into account. This paper presents an in-depth study of the active-to-passive ratio by proposing two simplified analytical models for circular DEA and comparing them. The first model is taking the hyperelastic material properties of the dielectric film into account while the second model is a linear elastic lumped parameter model based on the electro-mechanical analogy. Both models lie in good agreement and show a significant linear impact of the radial active-to-passive ratio on the electro-active strain and a resulting maximum of displacement around 50% radial coverage ratio. These findings are validated by experiments with actuators fabricated using silicone membranes. It is shown that the electrode size is not only an important parameter in the experimental design, but in some cases of higher significance for the accuracy of analytical models than the hyperelastic properties of the material. Furthermore, it could be shown that a radial coverage ratio of around 50% is desirable when measuring displacement as it maximizes the displacement and lowers the impact of deviations in electrode sizes due to fabrication errors.

13.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124336

RESUMO

Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address these challenges. The fiber reinforcement provides enhanced mechanical integrity and improved strain distribution, enabling efficient energy conversion and out-of-plane displacement. We discuss an analytical model and the fabrication process, including material selection, to realize fiber-reinforced DEAs. Numerical simulations and experimental results demonstrate the performance of the fiber-reinforced equibiaxial DEAs and characterize their displacement and force capabilities. Actuators with four and eight fibers are fabricated with 100 µm and 200 µm dielectric thicknesses. A maximal out-of-plane displacement of 500 µm is reached, with a force of 0.18 N, showing promise for the development of haptic devices.

14.
ACS Omega ; 9(4): 4754-4761, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313528

RESUMO

Due to some useful mechanical, dynamic, and dielectric properties along with the ease of processing and forming, liquid rubbers are ideal materials for fabricating dielectric elastomer actuators in various configurations and for many potential applications ranging from automation to automobile and medical industry. In this study, we present a cross-linkable liquid rubber composition where amine-catalyzed esterification reactions lead to the formation of a network structure based on anhydride functional isoprene rubber, carboxyl-terminated nitrile-butadiene rubber, and epoxy end-capped prepolymers. The success of this intricate network formation procedure was verified by HR-MAS NMR spectroscopy. The new isoprene-based elastomeric material exhibits actuation-relevant attributes including a low elastic modulus of 0.45 MPa, soft response to an applied load up to a large deformation of 300%, and a dielectric constant value (2.6) higher than the conventional Elastosil silicone (2.2). A dot actuator comprising of an isoprene dielectric elastomer film in unstretched state and carbon paste electrodes was fabricated that demonstrated an electrode deformation of 0.63%, which is nearly twice as high as for the commercial Elastosil 2030 film (∼0.30%) at 5 kV. Compared to the Elastosil silicone film, the enhanced performance is attributed to the low modulus and high dielectric constant value of the new isoprene elastomer.

15.
Materials (Basel) ; 17(19)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39410426

RESUMO

Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber-elastomer composite with integrated SMA wire is developed and investigated. Bending and torsion occur when the SMA is activated because of the anisotropic structure of the textile. The metrological challenge in characterizing actuators that perform both bending and torsion lies in the large active deformation of the composite and the associated difficulties in fully imaging and analyzing this with optical measurement methods. In this work, a multi-sensor camera system with up to four pairs of cameras connected in parallel is used. The structure to be characterized is recorded from all sides to evaluate the movement in three-dimensional space. The energy input and the time required for an even deflection of the actuator are investigated experimentally. Here, the activation parameters for the practical energy input required for long life with good deflection, i.e., good efficiency, were analyzed. Different parameters and times are considered to minimize the energy input and, thus, to prevent possible overheating and damage to the wire. Thermography is used to evaluate the heating of the SMA wire at different actuation times over a defined time.

16.
Microbiology (Reading) ; 159(Pt 2): 380-391, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223439

RESUMO

Knowledge on the proteome level about the adaptation of pathogenic mycobacteria to the environment in their natural hosts is limited. Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic and incurable granulomatous enteritis of ruminants, and has been suggested to be a putative aetiological agent of Crohn's disease in humans. Using a comprehensive LC-MS-MS and 2D difference gel electrophoresis (DIGE) approach, we compared the protein profiles of clinical strains of MAP prepared from the gastrointestinal tract of diseased cows with the protein profiles of the same strains after they were grown in vitro. LC-MS-MS analyses revealed that the principal enzymes for the central carbon metabolic pathways, including glycolysis, gluconeogenesis, the tricaboxylic acid cycle and the pentose phosphate pathway, were present under both conditions. Moreover, a broad spectrum of enzymes for ß-oxidation of lipids, nine of which have been shown to be necessary for mycobacterial growth on cholesterol, were detected in vivo and in vitro. Using 2D-DIGE we found increased levels of several key enzymes that indicated adaptation of MAP to the host. Among these, FadE5, FadE25 and AdhB indicated that cholesterol is used as a carbon source in the bovine intestinal mucosa; the respiratory enzymes AtpA, NuoG and SdhA suggested increased respiration during infection. Furthermore higher levels of the pentose phosphate pathway enzymes Gnd2, Zwf and Tal as well as of KatG, SodA and GroEL indicated a vigorous stress response of MAP in vivo. In conclusion, our results provide novel insights into the metabolic adaptation of a pathogenic mycobacterium in its natural host.


Assuntos
Proteínas de Bactérias/análise , Trato Gastrointestinal/microbiologia , Redes e Vias Metabólicas , Mycobacterium avium subsp. paratuberculosis/química , Mycobacterium avium subsp. paratuberculosis/metabolismo , Proteoma/análise , Adaptação Fisiológica , Animais , Bovinos , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Mycobacterium avium subsp. paratuberculosis/fisiologia , Paratuberculose/microbiologia , Espectrometria de Massas em Tandem
17.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959496

RESUMO

There is increasing interest in the use of novel elastomers with inherent or modified advanced dielectric and mechanical properties, as components of dielectric elastomer actuators (DEA). This requires corresponding techniques to assess their electro-mechanical performance. A common way to test dielectric materials is the fabrication of actuators with pre-stretch fixed by a stiff frame. This results in the problem that the electrode size has an influence on the achievable actuator displacement and strain, which is detrimental to the comparability of experiments. This paper presents an in-depth study of the active-to-passive ratio with the aim of investigating the influence of the coverage ratio on uniaxial actuator displacement and strain. To model the effect, a simple lumped-parameter model is proposed. The model shows that the coverage ratio for maximal displacement is 50%. To validate the model results, experiments are carried out. For this, a rectangular, fiber-reinforced DEA is used to assess the relation of the coverage ratio and deformation. Due to the stiffness of the fibers, highly anisotropic mechanical properties are achieved, leading to the uniaxial strain behavior of the actuator, which allows the validation of the one-dimensional model. To consider the influence of the simplifications in the lumped-parameter model, the results are compared to a hyperelastic model. In summary, it is shown that the ratio of the active-to-passive area has a significant influence on the actuator deformation. Both the model and experiments confirm that an active-to-passive ratio of 50% is particularly advantageous in most cases.

18.
ACS Appl Electron Mater ; 5(1): 189-195, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36711042

RESUMO

In this paper, we present a broadband microwave characterization of ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2) metal-ferroelectric-metal (MFM) thin film varactor from 1 kHz up to 0.11 THz. The varactor is integrated into the back-end-of-line (BEoL) of 180 nm CMOS technology as a shunting capacitor for the coplanar waveguide (CPW) transmission line. At low frequencies, the varactor shows a slight imprint behavior, with a maximum tunability of 15% after the wake-up. In the radio- and mmWave frequency range, the varactor's maximum tunability decreases slightly from 13% at 30 MHz to 10% at 110 GHz. Ferroelectric varactors were known for their frequency-independent, linear tunability as well as low loss. However, this potential was never fully realized due to limitations in integration. Here, we show that ferroelectric HfO2 thin films with good back-end-of-line compatibility support very large scale integration. This opens up a broad range of possible applications in the mmWave and THz frequency range such as 6G communications, imaging radar, or THz imaging.

19.
Materials (Basel) ; 16(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984054

RESUMO

X-ray photoelectron spectroscopy was used to study the direct synthesis of strontium and molybdenum oxide thin films deposited by multitarget reactive magnetron sputtering (MT-RMS). Sr and Mo targets with a purity of 99.9% and 99.5%, respectively, were co-sputtered in an argon-oxygen gas mixture. The chamber was provided with an oxygen background flow plus an additional controlled oxygen supply to each of the targets. We demonstrate that variation in the power applied to the Mo target during MT-RMS enables the production of strontium and molybdenum oxide films with variable concentrations of Mo atoms. Both molybdenum and strontium were found in the oxidized state, and no metallic peaks were detected. The deconvoluted high-resolution XPS spectra of molybdenum revealed the presence of several Mo 3d peaks, which indicates molybdenum bonds in a lower valence state. Contrary to the Mo spectra, the high-resolution strontium Sr 3d spectra for the same samples were very similar, and no additional peaks were detected.

20.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791862

RESUMO

Characterization of thermoelectric transport properties for temperature sensing, cooling, and energy harvesting applications is necessary for a reliable device performance in progressively minimized computer chips. In this contribution, we present a fully automated thermovoltage and sheet resistance measurement setup, which is calibrated and tested for the production of silicon- and silicon-germanium-doped as well as silicide complementary metal-oxide-semiconductor-compatible thin films. A LabVIEW-programmed software application automatically controls the measurement and recording of thermovoltages at individually defined temperature set points. The setup maps average temperature and temperature differences simultaneously in the regime from 40 to 70 °C. The Seebeck coefficient calculated by means of the inversion method was used to eliminate the offset voltage influence. Finally, we present and discuss the Seebeck coefficient as well as the sheet resistance for application-specific different temperature set points of several doped poly-Si, poly-SiGe, and silicides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA