RESUMO
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/ß-catenin, mitogen-activated protein kinase, and TGF-ß receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Antígeno B7-H1 , Filogenia , Neoplasias Colorretais/patologia , Microambiente Tumoral/genéticaRESUMO
Most patients with metastatic colorectal cancer (mCRC) have limited treatment options following standard-of-care therapy. VEGFR-tyrosine kinase inhibitors (TKIs) have demonstrated clinical activity in mCRC in combination with immune checkpoint inhibitors (ICIs), particularly in patients without liver metastases. The TKI zanzalintinib (XL092) targets VEGFR, MET and TAM kinases, proteins that are involved in tumor growth, angiogenesis, metastasis and immunosuppression. Zanzalintinib has immunomodulatory properties that may enhance response to ICIs. Presented is the design of STELLAR-303, a global, phase III, open-label, randomized study evaluating zanzalintinib plus atezolizumab versus regorafenib in patients with non-MSI-H mCRC who progressed during/after or are refractory/intolerant to standard-of-care therapy. The primary end point is overall survival in patients without liver metastases.Clinical Trial Registration: NCT05425940 (ClinicalTrials.gov).
Metastatic colorectal cancer (mCRC) is cancer of the colon or rectum that has spread to other parts of the body, most often to the liver, lungs and abdomen. People with mCRC that has worsened after initial treatment have limited options. Zanzalintinib is a novel oral investigational drug that can slow or stop cancer growth. It works by blocking certain proteins that play important roles in the development, growth and spread of cancer. Zanzalintinib may also help improve the effectiveness of another class of cancer drugs called immune checkpoint inhibitors (ICIs), which work by activating the patient's immune system to fight cancer. Here, we describe the design of STELLAR-303, an ongoing study that is comparing the effects of combining zanzalintinib and an ICI drug called atezolizumab with an approved treatment for mCRC called regorafenib. About 900 participants with mCRC will be enrolled in the study worldwide. To be included in the study, participants must have mCRC that worsened after previous therapies and must not have a high level of microsatellite instability, which is a specific feature of some mCRCs. Participants will be randomly given one of the two treatments. The main goal of the study is to evaluate zanzalintinib plus atezolizumab compared with regorafenib by measuring the length of time participants are alive after starting treatment, specifically in patients with mCRC that has not spread to the liver. Additionally, the study will look at the side effects with each treatment. The study is currently seeking participants.
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Feminino , Metástase Neoplásica , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Piridinas/administração & dosagem , Masculino , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/administração & dosagem , Benzofuranos , QuinazolinasRESUMO
Subclonal cancer populations change spatially and temporally during the disease course. Studies are revealing branched evolutionary cancer growth with low-frequency driver events present in subpopulations of cells, providing escape mechanisms for targeted therapeutic approaches. Despite such complexity, evidence is emerging for parallel evolution of subclones, mediated through distinct somatic events converging on the same gene, signal transduction pathway, or protein complex in different subclones within the same tumor. Tumors may follow gradualist paths (microevolution) as well as major shifts in evolutionary trajectories (macroevolution). Although macroevolution has been subject to considerable controversy in post-Darwinian evolutionary theory, we review evidence that such nongradual, saltatory leaps, driven through chromosomal rearrangements or genome doubling, may be particularly relevant to tumor evolution. Adapting cancer care to the challenges imposed by tumor micro- and macroevolution and developing deeper insight into parallel evolutionary events may prove central to improving outcome and reducing drug development costs.
Assuntos
Evolução Molecular , Heterogeneidade Genética , Neoplasias/genética , Aberrações Cromossômicas , Humanos , Mutação , Neoplasias/etiologiaRESUMO
OBJECTIVES: Percutaneous liver biopsy (PLB) poses specific challenges in oncological patients such as bleeding and tumour seeding. This study's aim was to compare a coaxial (C-PLB) and non-coaxial (NC-PLB) biopsy technique in terms of diagnostic yield, safety and seeding risk of image-guided PLB techniques in an oncological setting. METHODS: Local research committee approval was obtained for this single-site retrospective study. Patients who underwent a PLB between November 2011 and December 2017 were consecutively included. Medical records were reviewed to determine diagnostic yield and complications. Follow-up imaging was re-reviewed for seeding, defined as visible tumour deposits along the PLB track. Mann-Whitney U and chi-squared tests were performed to investigate differences between biopsy techniques in sample number, complications and seeding rate. RESULTS: In total, 741 patients (62 ± 13 years, 378 women) underwent 932 PLB (C-PLB 72.9% (679/932); NC-PLB 27.1% (253/932)). More tissue cores (p < 0.001) were obtained with C-PLB (median 4 cores; range 1-12) compared with NC-PLB (2 cores; range 1-4) and diagnostic yield was similar for both techniques (C-PLB 92.6% (629/679); NC-PLB 92.5% (234/253); p = 0.940). Complication rate (9.3%; 87/932) using C-PLB (8.2% (56/679)) was lower compared with NC-PLB (12.3% (31/253); p = 0.024). Major complications were uncommon (C-PLB 2.7% (18/679); NC-PLB 2.8% (7/253)); bleeding developed in 1.2% (11/932; C-PLB 1.2% (8/679); NC-PLB 1.2% (3/253)). Seeding was a rare event, occurring significantly less in C-PLB cases (C-PLB 1.3% (7/544); NC-PLB 3.1% (6/197); p = 0.021). CONCLUSIONS: C-PLB allows for high diagnostic tissue yield with a lower complication and seeding rate than a NC-PLB and should be the preferred method in an oncological setting. KEY POINTS: ⢠A coaxial percutaneous liver biopsy achieves a significant higher number of cores and fewer complications than a non-coaxial biopsy technique. ⢠The risk of tumour seeding is very low and is significantly lower using the coaxial biopsy technique. ⢠In this study, a larger number of cores (median = 4) could be safely acquired using the coaxial technique, providing sufficient material for advanced molecular analysis.
Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Biópsia Guiada por Imagem , Biópsia por Agulha , Feminino , Humanos , Fígado/diagnóstico por imagem , Estudos RetrospectivosRESUMO
BACKGROUND: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies. METHODS: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction. RESULTS: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS, parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing. CONCLUSIONS: This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution. CLINICALTRIALSGOV IDENTIFIER: NCT02112357.
Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudo de Associação Genômica Ampla , Humanos , Metástase Neoplásica , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Molecular intratumour heterogeneity (ITH) is common in clear cell renal carcinomas (ccRCCs). However, it remains unknown whether this is mirrored by heterogeneity of drug responses between metastases in the same patient. METHODS: We performed a retrospective central radiological analysis of patients with treatment-naïve metastatic ccRCC receiving anti-angiogenic tyrosine kinase inhibitors (TKIs) (sunitinib or pazopanib) within three similar phase II trials. Treatment was briefly interrupted for cytoreductive nephrectomy. All patients had multiple metastases that were measured by regular computed tomography scans from baseline until Response Evaluation Criteria In Solid Tumours (RECIST)-defined progression. Each metastasis was categorised as responding, stable or progressing. Patients were classed as having a homogeneous response if all lesions were of the same response category and a heterogeneous response if they differed. RESULTS: A total of 115 metastases were assessed longitudinally in 27 patients. Of these patients, 56% had a heterogeneous response. Progression occurred through the appearance of new metastases in 67%, through progression of existing lesions in 11% and by both in 22% of patients. Despite RECIST-defined progression, 57% of existing metastases remained controlled. The sum of controlled lesions was greater than that of uncontrolled lesions in 47% of patients who progressed only with measurable new lesions. CONCLUSIONS: We identified frequent ITH of anti-angiogenic TKI responses, with subsets of metastases responding and progressing within individual patients. This mirrors molecular ITH and may indicate that anti-angiogenic drug resistance is confined to subclones and not encoded on the trunk of the tumours' phylogenetic trees. This is clinically important, as patients with small-volume progression may benefit from drug continuation. Predominant progression with new rather than in existing metastases supports a change in disease biology through anti-angiogenics. The results highlight limitations of RECIST in heterogeneous cancers, which may influence clinical trial data validity. This analysis requires prospective confirmation. TRIAL REGISTRATION: European Clinical Trials Database(EudraCT): 2009-016675-29 , registered 17 March 2010; EudraCT: 2006-004511-21 , registered 09 March 2007; EudraCT: 2006-006491-38 , registered 22 December 2006.
Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND: Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. METHODS: To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. RESULTS: Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. CONCLUSIONS: Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.).
Assuntos
Carcinoma de Células Renais/genética , Evolução Molecular , Heterogeneidade Genética , Neoplasias Renais/genética , Fenótipo , Biomarcadores Tumorais , Biópsia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Aberrações Cromossômicas , Everolimo , Exoma , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Rim/patologia , Neoplasias Renais/patologia , Mutação , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Filogenia , Ploidias , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sirolimo/análogos & derivados , Sirolimo/farmacologiaRESUMO
Intratumour heterogeneity (ITH) may foster tumour adaptation and compromise the efficacy of personalized medicine approaches. The scale of heterogeneity within a tumour (intratumour heterogeneity) relative to genetic differences between tumours (intertumour heterogeneity) is unknown. To address this, we obtained 48 biopsies from eight stage III and IV clear cell renal cell carcinomas (ccRCCs) and used DNA copy-number analyses to compare biopsies from the same tumour with 440 single tumour biopsies from the Cancer Genome Atlas (TCGA). Unsupervised hierarchical clustering of TCGA and multi-region ccRCC samples revealed segregation of samples from the same tumour into unrelated clusters; 25% of multi-region samples appeared more similar to unrelated samples than to any other sample originating from the same tumour. We found that the majority of recurrent DNA copy number driver aberrations in single biopsies were not present ubiquitously in late-stage ccRCCs and were likely to represent subclonal events acquired during tumour progression. Such heterogeneous subclonal genetic alterations within individual tumours may impair the identification of robust ccRCC molecular subtypes classified by distinct copy number alterations and clinical outcomes. The co-existence of distinct subclonal copy number events in different regions of individual tumours reflects the diversification of individual ccRCCs through multiple evolutionary routes and may contribute to tumour sampling bias and impact upon tumour progression and clinical outcome.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA , Neoplasias Renais/genética , Biópsia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Instabilidade Cromossômica , Células Clonais , Análise por Conglomerados , Biologia Computacional , Análise Mutacional de DNA , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Mutação , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , PrognósticoRESUMO
The recognition of cancer cells by T cells can impact upon prognosis and be exploited for immunotherapeutic approaches. This recognition depends on the specific interaction between antigens displayed on the surface of cancer cells and the T cell receptor (TCR), which is generated by somatic rearrangements of TCR α- and ß-chains (TCRb). Our aim was to assess whether ultra-deep sequencing of the rearranged TCRb in DNA extracted from unfractionated clear cell renal cell carcinoma (ccRCC) samples can provide insights into the clonality and heterogeneity of intratumoural T cells in ccRCCs, a tumour type that can display extensive genetic intratumour heterogeneity (ITH). For this purpose, DNA was extracted from two to four tumour regions from each of four primary ccRCCs and was analysed by ultra-deep TCR sequencing. In parallel, tumour infiltration by CD4, CD8 and Foxp3 regulatory T cells was evaluated by immunohistochemistry and correlated with TCR-sequencing data. A polyclonal T cell repertoire with 367-16 289 (median 2394) unique TCRb sequences was identified per tumour region. The frequencies of the 100 most abundant T cell clones/tumour were poorly correlated between most regions (Pearson correlation coefficient, -0.218 to 0.465). 3-93% of these T cell clones were not detectable across all regions. Thus, the clonal composition of T cell populations can be heterogeneous across different regions of the same ccRCC. T cell ITH was higher in tumours pretreated with an mTOR inhibitor, which could suggest that therapy can influence adaptive tumour immunity. These data show that ultra-deep TCR-sequencing technology can be applied directly to DNA extracted from unfractionated tumour samples, allowing novel insights into the clonality of T cell populations in cancers. These were polyclonal and displayed ITH in ccRCC. TCRb sequencing may shed light on mechanisms of cancer immunity and the efficacy of immunotherapy approaches.
Assuntos
Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Células Clonais/imunologia , DNA de Neoplasias/genética , Feminino , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imunidade Celular , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de NeoplasiasRESUMO
DNA mismatch repair (MMR) deficiency and the associated microsatellite instability (MSI) phenotype has become a subject of enormous interest in recent years due to the demonstrated efficacy of immune checkpoint inhibitors (ICI) in advanced tumours. Assessing MSI in patients with gastrointestinal tract (GI) cancers is useful to exclude Lynch syndrome, but also to predict benefit for ICI. Following review of the relevant literature, this review article aims to outline the clinicopathologic spectrum of MSI and mismatch repair deficiency (dMMR) in the GI tract, hepatobiliary system and pancreas and discuss the therapeutic consideration in this disease.
Assuntos
Reparo de Erro de Pareamento de DNA , Neoplasias Gastrointestinais , Instabilidade de Microssatélites , Humanos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Reparo de Erro de Pareamento de DNA/genética , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed ten principles that could be translated to controlling cancers: (1) prevent onset, (2) monitor continuously, (3) identify thresholds below which there will be no intervention, (4) change interventions in response to burden, (5) preferentially select non-chemical control methods, (6) use target-specific drugs, (7) use the lowest effective dose, (8) reduce cross-resistance, (9) evaluate success based on long-term management, and (10) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
RESUMO
Clear cell renal cell carcinoma (ccRCC) is the most common pathological subtype of kidney cancer. Here, we integrated an unbiased genome-wide RNA interference screen for ccRCC survival regulators with an analysis of recurrently overexpressed genes in ccRCC to identify new therapeutic targets in this disease. One of the most potent survival regulators, the monocarboxylate transporter MCT4 (SLC16A3), impaired ccRCC viability in all eight ccRCC lines tested and was the seventh most overexpressed gene in a meta-analysis of five ccRCC expression datasets. MCT4 silencing impaired secretion of lactate generated through glycolysis and induced cell cycle arrest and apoptosis. Silencing MCT4 resulted in intracellular acidosis, and reduction in intracellular ATP production together with partial reversion of the Warburg effect in ccRCC cell lines. Intra-tumoural heterogeneity in the intensity of MCT4 protein expression was observed in primary ccRCCs. MCT4 protein expression analysis based on the highest intensity of expression in primary ccRCCs was associated with poorer relapse-free survival, whereas modal intensity correlated with Fuhrman nuclear grade. Consistent with the potential selection of subclones enriched for MCT4 expression during disease progression, MCT4 expression was greater at sites of metastatic disease. These data suggest that MCT4 may serve as a novel metabolic target to reverse the Warburg effect and limit disease progression in ccRCC.
Assuntos
Carcinoma de Células Renais/genética , Glicólise/genética , Neoplasias Renais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Interferência de RNA , Apoptose , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Intervalo Livre de Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Concentração de Íons de Hidrogênio , Estimativa de Kaplan-Meier , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Ácido Láctico/metabolismo , Fenótipo , Prognóstico , RNA Mensageiro/metabolismo , Fatores de Tempo , TransfecçãoRESUMO
IFNγ alters the immunopeptidome presented on HLA class I (HLA-I), and its activity on cancer cells is known to be important for effective immunotherapy responses. We performed proteomic analyses of untreated and IFNγ-treated colorectal cancer patient-derived organoids and combined this with transcriptomic and HLA-I immunopeptidomics data to dissect mechanisms that lead to remodeling of the immunopeptidome through IFNγ. IFNγ-induced changes in the abundance of source proteins, switching from the constitutive to the immunoproteasome, and differential upregulation of different HLA alleles explained some, but not all, observed peptide abundance changes. By selecting for peptides which increased or decreased the most in abundance, but originated from proteins with limited abundance changes, we discovered that the amino acid composition of presented peptides also influences whether a peptide is upregulated or downregulated on HLA-I through IFNγ. The presence of proline within the peptide core was most strongly associated with peptide downregulation. This was validated in an independent dataset. Proline substitution in relevant core positions did not influence the predicted HLA-I binding affinity or stability, indicating that proline effects on peptide processing may be most relevant. Understanding the multiple factors that influence the abundance of peptides presented on HLA-I in the absence or presence of IFNγ is important to identify the best targets for antigen-specific cancer immunotherapies such as vaccines or T-cell receptor engineered therapeutics. SIGNIFICANCE: IFNγ remodels the HLA-I-presented immunopeptidome. We showed that peptide-specific factors influence whether a peptide is upregulated or downregulated and identified a preferential loss or downregulation of those with proline near the peptide center. This will help selecting immunotherapy target antigens which are consistently presented by cancer cells.
Assuntos
Neoplasias , Proteômica , Humanos , Neoplasias/genética , Interferon gama , Antígenos , Peptídeos/química , ProlinaRESUMO
BACKGROUND: In metastatic colorectal cancer (mCRC), acquired resistance against anti-EGFR targeted monoclonal antibodies, such as cetuximab (CET), was shown to be frequently caused by activating alterations in the RAS genes KRAS or NRAS. To this day, no efficient follow-up treatment option has emerged to treat mCRC in such a setting of resistance. METHODS: To uncover potential targets for second-line targeted therapies, we used mass-spectrometric proteomics to shed light on kinome reprogramming in an established cellular model of acquired, KRAS-associated CET resistance. RESULTS: This CET resistance was reflected by significant changes in the kinome, most of them individual to each cell line. Interestingly, all investigated resistant cell lines displayed upregulation of the Ephrin type-A receptor 2 (EPHA2), a well-known driver of traits of progression. Expectedly resistant cell lines displayed increased migration (p < 0.01) that was significantly reduced by targeting the EPHA2 signalling axis using RNA interference (RNAi) (p < 0.001), ephrin-A1 stimulation (p < 0.001), dasatinib (p < 0.01), or anti-EPHA2 antibody treatment (p < 0.001), identifying it as an actionable target in mCRC with acquired CET resistance. CONCLUSION: These results highlight EPHA2 and its role in mCRC with KRAS-gene mutated acquired CET resistance and support its use as a potential actionable target for the development of future precision medicine therapies.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Mutação , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
BACKGROUND AND AIMS: The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS: A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS: Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS: Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.
Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Microbiota/genética , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/cirurgiaRESUMO
Survival in mismatch-repair proficient (MMRp) metastatic colorectal cancer (mCRC) remains poor and chemotherapy is the mainstay of treatment. Immunotherapy has demonstrated durable responses and a favourable side-effect profile in various cancer types and multiple clinical trials have been conducted in MMRp mCRC. In this review we summarise emerging trial data which demonstrate promising immunotherapy combinations in MMRp mCRC. We outline barriers to success, evaluate emerging biomarkers and discuss potential strategies to increase the effectiveness of immunotherapy in MMRp mCRC.
Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , ImunoterapiaRESUMO
We appear to be faced with 'two truths' in cancer-one of major advances and successes and another one of remaining short-comings and significant challenges. Despite decades of research and substantial progress in treating cancer, most patients with metastatic cancer still experience great suffering and poor outcomes. Metastatic cancer, for the vast majority of patients, remains incurable. In the context of advanced disease, many clinical trials report only incremental advances in progression-free and overall survival. At the same time, the breadth and depth of new scientific discoveries in cancer research are staggering. These discoveries are providing increasing mechanistic detail into the inner workings of normal and cancer cells, as well as into cancer-host interactions; however, progress remains frustratingly slow in translating these discoveries into improved diagnostic, prognostic, and therapeutic interventions. Despite enormous advances in cancer research and progress in progression-free survival, or even cures, for certain cancer types-with earlier detection followed by surgical, adjuvant, targeted, or immuno- therapies, we must challenge ourselves to do even better where patients do not respond or experience evolving therapy resistance. We propose that defining cancer evolution as a separate domain of study and integrating the concept of evolvability as a core hallmark of cancer can help position scientific discoveries into a framework that can be more effectively harnessed to improve cancer detection and therapy outcomes and to eventually decrease cancer lethality. In this perspective, we present key questions and suggested areas of study that must be considered-not only by the field of cancer evolution, but by all investigators researching, diagnosing, and treating cancer.
Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , PrognósticoRESUMO
BACKGROUND: Perioperative FLOT (fluorouracil plus leucovorin, oxaliplatin, and docetaxel) chemotherapy is a recent regimen used to treat resectable oesophagogastric (OG) adenocarcinoma, associated with improved overall survival versus earlier chemotherapy strategies. This study compared short-term perioperative morbidity in a large tertiary centre series of FLOT to a matched cohort receiving ECX/ECF (epirubicin, cisplatin, capecitabine (X) or 5-fluorouracil (F)). METHODS: Consecutive patients completing four perioperative cycles of FLOT and proceeding to surgery with resectable OG adenocarcinoma were included. This was matched to patients from a historic ECX/ECF cohort from the same institution. A propensity score was calculated, and a secondary analysis using a propensity-matched group performed. RESULTS: Cohorts were matched by tumour location and operations performed. In total there were 129 (64.5 per cent) oesophageal and 71 (35.5 per cent) gastric resections (FLOT 57 oesophageal, 43 gastric; ECF/ECX 64 oesophageal, 36 gastric). The median length of stay after surgery was 12 days in the FLOT group versus 15 in ECF/ECX (P = 0.035). There were no significant differences in overall perioperative complications and, specifically, no difference in OG anastomotic leaks, analysed by site (gastric (FLOT 0/79 (0 per cent) versus ECX 2/79 (2.5 per cent); P = 0.123), oesophageal (FLOT 4/121 (3.3 per cent) versus ECX 5/121 (4.1 per cent); P = 0.868) or type of surgery (open FLOT 1/121 (0.8 per cent) versus ECX 3/121 (2.5 per cent); P = 0.368; minimally invasive (FLOT 3/121 (2.5 per cent) versus ECX 2/121 (1.7 per cent); P = 0.555)). There was no statistical difference in leak-related return to theatre, 30-day (FLOT 0 (0 per cent) versus ECX 3/100 (3.0 per cent); P = 0.081), or 90-day (FLOT 0 (0 per cent) versus ECX 2/100 (2.0 per cent); P = 0.155) mortality. CONCLUSION: In terms of surgical complications, FLOT and ECX/ECF were equally safe in patients undergoing resection for OG adenocarcinoma.
Assuntos
Adenocarcinoma , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Capecitabina/administração & dosagem , Cisplatino/administração & dosagem , Estudos de Coortes , Docetaxel/administração & dosagem , Epirubicina/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/cirurgia , Fluoruracila/administração & dosagem , Humanos , Leucovorina/administração & dosagem , Oxaliplatina/administração & dosagem , Assistência Perioperatória , Pontuação de Propensão , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Resultado do TratamentoRESUMO
BACKGROUND: Renal cell carcinoma (RCC) is a heterogeneous disease comprising histologically defined subtypes. For therapy selection, precise subtype identification and individualized prognosis are mandatory, but currently limited. Our aim was to refine subtyping and outcome prediction across main subtypes, assuming that a tumor is composed of molecular features present in distinct pathological subtypes. METHODS: Individual RCC samples were modeled as linear combination of the main subtypes (clear cell (ccRCC), papillary (pRCC), chromophobe (chRCC)) using computational gene expression deconvolution. The new molecular subtyping was compared with histological classification of RCC using the Cancer Genome Atlas (TCGA) cohort (n = 864; ccRCC: 512; pRCC: 287; chRCC: 65) as well as 92 independent histopathologically well-characterized RCC. Predicted continuous subtypes were correlated to cancer-specific survival (CSS) in the TCGA cohort and validated in 242 independent RCC. Association with treatment-related progression-free survival (PFS) was studied in the JAVELIN Renal 101 (n = 726) and IMmotion151 trials (n = 823). CSS and PFS were analyzed using the Kaplan-Meier and Cox regression analysis. RESULTS: One hundred seventy-four signature genes enabled reference-free molecular classification of individual RCC. We unambiguously assign tumors to either ccRCC, pRCC, or chRCC and uncover molecularly heterogeneous tumors (e.g., with ccRCC and pRCC features), which are at risk of worse outcome. Assigned proportions of molecular subtype-features significantly correlated with CSS (ccRCC (P = 4.1E - 10), pRCC (P = 6.5E - 10), chRCC (P = 8.6E - 06)) in TCGA. Translation into a numerical RCC-R(isk) score enabled prognosis in TCGA (P = 9.5E - 11). Survival modeling based on the RCC-R score compared to pathological categories was significantly improved (P = 3.6E - 11). The RCC-R score was validated in univariate (P = 3.2E - 05; HR = 3.02, 95% CI: 1.8-5.08) and multivariate analyses including clinicopathological factors (P = 0.018; HR = 2.14, 95% CI: 1.14-4.04). Heterogeneous PD-L1-positive RCC determined by molecular subtyping showed increased PFS with checkpoint inhibition versus sunitinib in the JAVELIN Renal 101 (P = 3.3E - 04; HR = 0.52, 95% CI: 0.36 - 0.75) and IMmotion151 trials (P = 0.047; HR = 0.69, 95% CI: 0.48 - 1). The prediction of PFS significantly benefits from classification into heterogeneous and unambiguous subtypes in both cohorts (P = 0.013 and P = 0.032). CONCLUSION: Switching from categorical to continuous subtype classification across most frequent RCC subtypes enables outcome prediction and fosters personalized treatment strategies.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Antígeno B7-H1 , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Prognóstico , SunitinibeRESUMO
PURPOSE: Non-V600 mutations comprise approximately 35% of all BRAF mutations in cancer. Many of these mutations have been identified as oncogenic drivers and can be classified into three classes according to molecular characteristics. Consensus treatment strategies for class 2 and 3 BRAF mutations have not yet been established. METHODS: We performed a systematic review and meta-analysis with published reports of individual patients with cancer harboring class 2 or 3 BRAF mutations from 2010 to 2021, to assess treatment outcomes with US Food and Drug Administration-approved mitogen-activated protein kinase (MAPK) pathway targeted therapy (MAPK TT) according to BRAF class, cancer type, and MAPK TT type. Coprimary outcomes were response rate and progression-free survival. RESULTS: A total of 18,167 studies were screened, identifying 80 studies with 238 patients who met inclusion criteria. This included 167 patients with class 2 and 71 patients with class 3 BRAF mutations. Overall, 77 patients achieved a treatment response. In both univariate and multivariable analyses, response rate and progression-free survival were higher among patients with class 2 compared with class 3 mutations, findings that remain when analyses are restricted to patients with melanoma or lung primary cancers. MEK ± BRAF inhibitors demonstrated greater clinical activity in class 2 compared with class 3 BRAF-mutant tumors than BRAF or EGFR inhibitors. CONCLUSION: This meta-analysis suggests that MAPK TTs have clinical activity in some class 2 and 3 BRAF-mutant cancers. BRAF class may dictate responsiveness to current and emerging treatment strategies, particularly in melanoma and lung cancers. Together, this analysis provides clinical validation of predictions made on the basis of a mutation classification system established in the preclinical literature. Further evaluation with prospective clinical trials is needed for this population.