Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 10(10): M110.005751, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21725060

RESUMO

Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.


Assuntos
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Animais , Sítios de Ligação/genética , Biomarcadores/metabolismo , Bases de Dados de Proteínas , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Mitocôndrias/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
2.
Mol Cell Proteomics ; 8(11): 2487-99, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19648646

RESUMO

We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.


Assuntos
Proteínas 14-3-3/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica/métodos , Actinas/química , Apoptose , Sítios de Ligação , Cromatografia Líquida/métodos , Células HeLa , Humanos , Espectrometria de Massas/métodos , Modelos Biológicos , Peptídeos/química , Proteoma , Transdução de Sinais , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA