Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Traffic ; 19(5): 354-369, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29451726

RESUMO

Live-cell correlative light-electron microscopy (live-cell-CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3-dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB-SEM) in a modular live-cell-CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal-associated membrane protein 1-green fluorescent protein (LAMP-1-GFP), analyzed the dynamics of individual GFP-positive spots, and correlated these to their corresponding fine-architecture and immediate cellular environment. By FIB-SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB-SEM, which significantly reduces time required for image acquisition and data processing.


Assuntos
Lisossomos/ultraestrutura , Biogênese de Organelas , Tomografia com Microscopia Eletrônica/métodos , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Imagem Óptica/métodos
2.
J Am Chem Soc ; 140(17): 5755-5763, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29569443

RESUMO

Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2- xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.

4.
Angew Chem Int Ed Engl ; 57(1): 257-261, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29119721

RESUMO

Establishing structure-activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure-reactivity information was obtained for 100 nm thin, microtomed sections of a single FCC catalyst particle using this novel SMF-TEM high-resolution combination. High reactivity in a thiophene oligomerization probe reaction correlated well with TEM-derived zeolite locations, while matrix components, such as clay and amorphous binder material, were found not to display activity. Differences in fluorescence intensity were also observed within and between distinct zeolite aggregate domains, indicating that not all zeolite domains are equally active.

5.
J Cell Sci ; 126(Pt 21): 4900-12, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943881

RESUMO

EGFR signaling is attenuated by endocytosis and degradation of receptor-ligand complexes in lysosomes. Endocytosis of EGFR is known to be regulated by multiple post-translational modifications. The observation that prevention of these modifications does not block endocytosis completely, suggests the involvement of other mechanism(s). Recently, receptor clustering has been suggested to induce internalization of multiple types of membrane receptors. However, the mechanism of clustering-induced internalization remains unknown. We have used biparatopic antibody fragments from llama (VHHs) to induce EGFR clustering without stimulating tyrosine kinase activity. Using this approach, we have found an essential role for the N-terminal GG4-like dimerization motif in the transmembrane domain (TMD) for clustering-induced internalization. Moreover, conventional EGF-induced receptor internalization depends exclusively on this TMD dimerization and kinase activity. Mutations in this dimerization motif eventually lead to reduced EGFR degradation and sustained signaling. We propose a novel role for the TMD dimerization motif in the negative-feedback control of EGFR. The widely conserved nature of GG4-like dimerization motifs in transmembrane proteins suggests a general role for these motifs in clustering-induced internalization.


Assuntos
Membrana Celular/metabolismo , Endocitose , Receptores ErbB/química , Receptores ErbB/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Dimerização , Receptores ErbB/genética , Humanos , Camundongos , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
6.
J Opt Soc Am A Opt Image Sci Vis ; 31(6): 1337-47, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24977374

RESUMO

Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/instrumentação , Lentes , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
7.
Traffic ; 12(7): 806-14, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21449950

RESUMO

Immuno-transmission electron microscopy (TEM) is the technique of choice for high-resolution localization of proteins in fixed specimen. Here we introduce 2 novel methods for the fixation of sections from cryo-immobilized samples that result in excellent ultrastructural preservation. These high-speed fixation techniques, both called VIS2FIX, allow for a reduction in sample preparation time from at least 1 week to only 8 h. The methods were validated in immuno-TEM experiments on THP-1 monocytes, human umbilical vein endothelial cells (HUVECs) and Madin-Darby canine kidney (MDCK-II) cells. The fixation and retention of neutral lipids is demonstrated, offering unique prospects for the application of immuno-TEM in the lipidomics field. Furthermore, the VIS2FIX methods were successfully employed in correlative fluorescence and electron microscopy.


Assuntos
Microscopia Imunoeletrônica/métodos , Fixação de Tecidos/métodos , Animais , Linhagem Celular , Cães , Humanos , Imuno-Histoquímica , Lipídeos/química , Fatores de Tempo
8.
Appl Environ Microbiol ; 79(20): 6345-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934488

RESUMO

Label-free nonlinear spectral imaging microscopy (NLSM) records two-photon-excited fluorescence emission spectra of endogenous fluorophores within the specimen. Here, NLSM is introduced as a novel, minimally invasive method to analyze the metabolic state of fungal hyphae by monitoring the autofluorescence of NAD(P)H and flavin adenine dinucleotide (FAD). Moreover, the presence of melanin was analyzed by NLSM. NAD(P)H, FAD, and melanin were used as biomarkers for freshness of mushrooms of Agaricus bisporus (white button mushroom) that had been stored at 4°C for 0 to 17 days. During this period, the mushrooms did not show changes in morphology or color detectable by eye. In contrast, FAD/NAD(P)H and melanin/NAD(P)H ratios increased over time. For instance, these ratios increased from 0.92 to 2.02 and from 0.76 to 1.53, respectively, at the surface of mushroom caps that had been harvested by cutting the stem. These ratios were lower under the skin than at the surface of fresh mushrooms (0.78 versus 0.92 and 0.41 versus 0.76, respectively), indicative of higher metabolism and lower pigment formation within the fruiting body. Signals were different not only between tissues of the mushroom but also between neighboring hyphae. These data show that NLSM can be used to determine the freshness of mushrooms and to monitor the postharvest browning process at an early stage. Moreover, these data demonstrate the potential of NLSM to address a broad range of fundamental and applied microbiological processes.


Assuntos
Agaricus/química , Agaricus/metabolismo , Hifas/química , Hifas/metabolismo , Melaninas/análise , Microscopia de Fluorescência/métodos , Análise Espectral/métodos
9.
Blood ; 118(6): 1570-8, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21693760

RESUMO

Cytotoxic T lymphocytes (CTLs) kill target cells through the polarized release of lytic molecules from secretory lysosomes. Loss of munc13-4 function inhibits this process and causes familial hemophagocytic lymphohistiocytosis type 3 (FHL3). munc13-4 binds rab27a, but the necessity of the complex remains enigmatic, because studies in knockout models suggest separate functions. In the present study, we describe a noncanonical rab27a-binding motif in the N-terminus of munc13-4. Point mutants in this sequence have severely impaired rab27a binding, allowing dissection of rab27a requirements in munc13-4 function. The munc13-4-rab27a complex is not needed for secretory lysosome maturation, as shown by complementation in CTLs from FHL3 patients and in a mast cell line silenced for munc13-4. In contrast, fusion of secretory lysosomes with, and content release at the plasma membrane during degranulation, strictly required the munc13-4-rab27a complex. Total internal reflection fluorescence microscopy imaging revealed that the complex corrals motile secretory lysosomes beneath the plasma membrane during degranulation and controls their docking. The propensity to stall motility of secretory lysosomes is lost in cells expressing munc13-4 point mutants that do not bind rab27. In summary, these results uncovered a mechanism for tethering secretory lysosomes to the plasma membrane that is essential for degranulation in immune cells.


Assuntos
Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Exocitose , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/metabolismo , Linfo-Histiocitose Hemofagocítica/patologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Linfócitos T Citotóxicos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
10.
Opt Express ; 21(10): 11769-82, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736399

RESUMO

We report a spectrally resolved fluorescence lifetime imaging system based on time gated single photon detection with a fixed gate width of 200 ps and 7 spectral channels. Time gated systems can operate at high count rates but usually have large gate widths and sample only part of the fluorescence decay curve. In the system presented in this work, the fluorescence signal is sampled using a high speed transceiver. An error analysis is carried out to characterize the performance of both lifetime and spectral detection. The effect of gate width and spectral channel width on the accuracy of estimated lifetimes and spectral widths is described. The performance of the whole instrument is evaluated at count rates of up to 12 MHz. Accurate fluorescence lifetimes (error < 2%) are recorded at count rates as high as 5 MHz. This is limited by the PMT performance, not by the electronics. Analysis of the large spectral lifetime image sets is challenging and time-consuming. Here, we demonstrate the use of lifetime and spectral phasors for analyzing images of fibroblast cells with 2 different labeled components. The phasor approach provides a fast and intuitive way of analyzing the results of spectrally resolved fluorescence lifetime imaging experiments.


Assuntos
Aumento da Imagem/instrumentação , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Haematologica ; 98(11): 1810-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23753027

RESUMO

Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα remains ill defined. We have previously found that glycoprotein Ibα forms clusters upon platelet cooling and hypothesized that such a property enhances the interaction with von Willebrand factor under physiological conditions. We analyzed the distribution of glycoprotein Ibα with Förster resonance energy transfer using time-gated fluorescence lifetime imaging microscopy. Perfusion at a shear rate of 1,600 s(-1) induced glycoprotein Ibα clusters on platelets adhered to von Willebrand factor, while clustering did not require von Willebrand factor contact at 10,000 s(-1). Shear-induced clustering was reversible, not accompanied by granule release or αIIbß3 activation and improved glycoprotein Ibα-dependent platelet interaction with von Willebrand factor. Clustering required glycoprotein Ibα translocation to lipid rafts and critically depended on arachidonic acid-mediated binding of 14-3-3ζ to its cytoplasmic tail. This newly identified mechanism emphasizes the ability of platelets to respond to mechanical force and provides new insights into how changes in hemodynamics influence arterial thrombus formation.


Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Resistência ao Cisalhamento/fisiologia , Fator de von Willebrand/metabolismo , Adesão Celular/fisiologia , Análise por Conglomerados , Humanos , Ligação Proteica/fisiologia , Distribuição Aleatória
12.
Chemistry ; 19(12): 3846-59, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23447400

RESUMO

While cycling through a fluid catalytic cracking (FCC) unit, the structure and performance of FCC catalyst particles are severely affected. In this study, we set out to characterize the damage to commercial equilibrium catalyst particles, further denoted as ECat samples, and map the different pathways involved in their deactivation in a practical unit. The degradation was studied on a structural and a functional level. Transmission electron microscopy (TEM) of ECat samples revealed several structural features; including zeolite crystals that were partly or fully severed, mesoporous, macroporous, and/or amorphous. These defects were then correlated to structural features observed in FCC particles that were treated with different levels of hydrothermal deactivation. This allowed us not only to identify which features observed in ECat samples were a result of hydrothermal deactivation, but also to determine the severity of treatments resulting in these defects. For functional characterization of the ECat sample, the Brønsted acidity within individual FCC particles was studied by a selective fluorescent probe reaction with 4-fluorostyrene. Integrated laser and electron microscopy (iLEM) allowed correlating this Brønsted acidity to structural features by combining a fluorescence and a transmission electron microscope in a single set-up. Together, these analyses allowed us to postulate a plausible model for the degradation of zeolite crystals in FCC particles in the ECat sample. Furthermore, the distribution of the various deactivation processes within particles of different ages was studied. A rim of completely deactivated zeolites surrounding each particle in the ECat sample was identified by using iLEM. These zeolites, which were never observed in fresh or steam-deactivated samples, contained clots of dense structures. The structures are proposed to be carbonaceous deposits formed during the cracking process, and seem resistant towards burning off during catalyst regeneration.


Assuntos
Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Zeolitas/química , Catálise , Microscopia de Fluorescência
13.
Nano Lett ; 12(2): 749-57, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22214477

RESUMO

We report the synthesis of ultranarrow (Zn,Cd)Te/CdSe colloidal heteronanowires, using ZnTe magic size clusters as seeds. The wire formation starts with a partial Zn for Cd cation exchange, followed by self-organization into segmented heteronanowires. Further growth occurs by inclusion of CdSe. The heteronanowires emit in the 530 to 760 nm range with high quantum yields. The electron-hole overlap decreases with increasing CdSe volume fraction, allowing the optical properties to be controlled by adjusting the heteronanowire composition.


Assuntos
Compostos de Cádmio/química , Cromo/química , Luminescência , Nanofios/química , Compostos de Selênio/química , Telúrio/química , Zinco/química , Compostos de Cádmio/síntese química , Coloides/química , Elétrons , Tamanho da Partícula , Compostos de Selênio/síntese química , Propriedades de Superfície
14.
J Struct Biol ; 180(2): 382-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22982545

RESUMO

Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Substituição ao Congelamento
15.
Opt Express ; 20(12): 12729-41, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714302

RESUMO

A new global analysis algorithm to analyse (hyper-) spectral images is presented. It is based on the phasor representation that has been demonstrated to be very powerful for the analysis of lifetime imaging data. In spectral phasor analysis the fluorescence spectrum of each pixel in the image is Fourier transformed. Next, the real and imaginary components of the first harmonic of the transform are employed as X and Y coordinates in a scatter (spectral phasor) plot. Importantly, the spectral phasor representation allows for rapid (real time) semi-blind spectral unmixing of up to three components in the image. This is demonstrated on slides with fixed cells containing three fluorescent labels. In addition the method is used to analyse autofluorescence of cells in a fresh grass blade. It is shown that the spectral phasor approach is compatible with spectral imaging data recorded with a low number of spectral channels.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Animais , Bovinos , Corantes/metabolismo , Células Endoteliais/citologia , Cervo Muntjac , Distribuição Normal , Poaceae/citologia , Artéria Pulmonar/citologia , Padrões de Referência , Reprodutibilidade dos Testes , Soluções , Coloração e Rotulagem
16.
Haematologica ; 97(12): 1873-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22733027

RESUMO

BACKGROUND: Storing platelets for transfusion at room temperature increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. DESIGN AND METHODS: We examined the change in glycoprotein Ibα distribution using Förster resonance energy transfer by time-gated fluorescence lifetime imaging microscopy. RESULTS: Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-D-glucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation increased the survival of cold-stored platelets to above the levels of platelets stored at room temperature without compromising hemostatic functions. CONCLUSIONS: We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future.


Assuntos
Proteínas 14-3-3/metabolismo , Plaquetas/metabolismo , Gangliosídeo G(M1)/metabolismo , Microdomínios da Membrana/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Apoptose , Plaquetas/citologia , Temperatura Baixa , Transferência Ressonante de Energia de Fluorescência , Glicosilação , Hemostáticos , Humanos , Microscopia de Fluorescência , Transporte Proteico
17.
J Opt Soc Am A Opt Image Sci Vis ; 29(11): 2428-38, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201806

RESUMO

Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by sequentially changing the settings of the adaptive element until a predetermined image quality metric is optimized. An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic polynomial. We propose a new method to compute the parameters of the polynomial from experimental data. This method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computation of the parameters with respect to existing methods. In addition, we propose an algorithm to perform aberration correction requiring a minimum of N+1 measurements, where N is the number of considered aberration modes. This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our arguments are corroborated by experimental validation in a laboratory environment.


Assuntos
Modelos Teóricos , Fenômenos Ópticos , Algoritmos , Análise dos Mínimos Quadrados , Imagem Óptica
18.
Front Cell Dev Biol ; 10: 829545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478966

RESUMO

Intracellular processes depend on a strict spatial and temporal organization of proteins and organelles. Therefore, directly linking molecular to nanoscale ultrastructural information is crucial in understanding cellular physiology. Volume or three-dimensional (3D) correlative light and electron microscopy (volume-CLEM) holds unique potential to explore cellular physiology at high-resolution ultrastructural detail across cell volumes. However, the application of volume-CLEM is hampered by limitations in throughput and 3D correlation efficiency. In order to address these limitations, we describe a novel pipeline for volume-CLEM that provides high-precision (<100 nm) registration between 3D fluorescence microscopy (FM) and 3D electron microscopy (EM) datasets with significantly increased throughput. Using multi-modal fiducial nanoparticles that remain fluorescent in epoxy resins and a 3D confocal fluorescence microscope integrated into a Focused Ion Beam Scanning Electron Microscope (FIB.SEM), our approach uses FM to target extremely small volumes of even single organelles for imaging in volume EM and obviates the need for post-correlation of big 3D datasets. We extend our targeted volume-CLEM approach to include live-cell imaging, adding information on the motility of intracellular membranes selected for volume-CLEM. We demonstrate the power of our approach by targeted imaging of rare and transient contact sites between the endoplasmic reticulum (ER) and lysosomes within hours rather than days. Our data suggest that extensive ER-lysosome and mitochondria-lysosome interactions restrict lysosome motility, highlighting the unique capabilities of our integrated CLEM pipeline for linking molecular dynamic data to high-resolution ultrastructural detail in 3D.

19.
Cell Rep Methods ; 2(5): 100220, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35637912

RESUMO

We present a bimodal endocytic tracer, fluorescent BSA-gold (fBSA-Au), as a fiducial marker for 2D and 3D correlative light and electron microscopy (CLEM) applications. fBSA-Au consists of colloidal gold (Au) particles stabilized with fluorescent BSA. The conjugate is efficiently endocytosed and distributed throughout the 3D endolysosomal network of cells and has an excellent visibility in both fluorescence microscopy (FM) and electron microscopy (EM). We demonstrate that fBSA-Au facilitates rapid registration in several 2D and 3D CLEM applications using Tokuyasu cryosections, resin-embedded material, and cryoelectron microscopy (cryo-EM). Endocytosed fBSA-Au benefits from a homogeneous 3D distribution throughout the endosomal system within the cell, does not obscure any cellular ultrastructure, and enables accurate (50-150 nm) correlation of fluorescence to EM data. The broad applicability and visibility in both modalities makes fBSA-Au an excellent endocytic fiducial marker for 2D and 3D (cryo)CLEM applications.


Assuntos
Crioultramicrotomia , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica , Microscopia de Fluorescência/métodos , Crioultramicrotomia/métodos
20.
J Biol Chem ; 285(50): 39481-9, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20940297

RESUMO

The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ∼40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.


Assuntos
Receptores ErbB/química , Animais , Anisotropia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/química , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Cinética , Ligantes , Camundongos , Células NIH 3T3 , Ligação Proteica , Proteínas Tirosina Quinases/química , Transdução de Sinais , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA