Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 78(6): 1152-1165.e8, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32516598

RESUMO

The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.


Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Linhagem Celular , DNA/metabolismo , Dano ao DNA , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Genes BRCA1/fisiologia , Humanos , Enzimas Multifuncionais/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
2.
Analyst ; 146(15): 4905-4917, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34250530

RESUMO

We report on the development of surface plasmon resonance (SPR) sensors and matching ELISAs for the detection of nucleocapsid and spike antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in human serum, plasma and dried blood spots (DBS). When exposed to SARS-CoV-2 or a vaccine against SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the fraction of the population potentially immunized against SARS-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with various sources of SARS-CoV-2 recombinant proteins expressed in different cell lines detected human anti-SARS-CoV-2 IgG antibodies in clinical samples. Nucleocapsid expressed in different cell lines did not significantly change the sensitivity of the assays, whereas the use of a CHO cell line to express spike ectodomain led to excellent performance. This bioassay was performed on a portable SPR instrument capable of measuring 4 biological samples within 30 minutes of sample/sensor contact and the chip could be regenerated at least 9 times. Multi-site validation was then performed with in-house and commercial ELISA, which revealed excellent cross-correlations with Pearson's coefficients exceeding 0.85 in all cases, for measurements in DBS and plasma. This strategy paves the way to point-of-care and rapid testing for antibodies in the context of viral infection and vaccine efficacy monitoring.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacinas contra COVID-19 , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus , Ressonância de Plasmônio de Superfície
3.
Glycoconj J ; 32(9): 729-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452603

RESUMO

Legionaminic acids are analogs of sialic acid that occur in several bacteria. The most commonly occurring form is Leg5Ac7Ac, which differs from Neu5Ac only at the C7 (acetamido) and C9 (deoxy) positions. While these differences greatly reduce the susceptibility of Leg compounds to sialidases, several sialyltransferases have been identified that can use CMP-Leg5Ac7Ac as a donor (Watson et al. 2011). We report the successful modification with Leg5Ac7Ac of a glycolipid, GM1a, and two glycoproteins, interferon-α2b and α1-antitrypsin, by means of two mammalian sialyltransferases, namely porcine ST3Gal1 and human ST6Gal1. The Leg5Ac7Ac form of GD1a was not recognized by the myelin-associated glycoprotein (MAG, Siglec-4), confirming the importance of the glycerol moiety in the interaction of sialo-glycans with Siglecs.


Assuntos
Ácidos Siálicos/química , Sialiltransferases/química , Animais , Gangliosídeo G(M1)/química , Gangliosídeo G(M1)/metabolismo , Humanos , Interferon-alfa/química , Interferon-alfa/metabolismo , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/metabolismo , Ligação Proteica , Sialiltransferases/metabolismo , Suínos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
4.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779126

RESUMO

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas contra COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutação , Concentração de Íons de Hidrogênio , Anticorpos Neutralizantes
5.
Front Immunol ; 13: 1052424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741379

RESUMO

Introduction: Early in the COVID-19 pandemic, reagent availability was not uniform, and infrastructure had to be urgently adapted to undertake COVID-19 surveillance. Methods: Before the validation of centralized testing, two enzyme-linked immunosorbent assays (ELISA) were established independently at two decentralized sites using different reagents and instrumentation. We compared the results of these assays to assess the longitudinal humoral response of SARS-CoV-2-positive (i.e., PCR-confirmed), non-hospitalized individuals with mild to moderate symptoms, who had contracted SARSCoV-2 prior to the appearance of variants of concern in Québec, Canada. Results: The two assays exhibited a high degree of concordance to identify seropositive individuals, thus validating the robustness of the methods. The results also confirmed that serum immunoglobulins persist ≥ 6 months post-infection among non-hospitalized adults and that the antibodies elicited by infection cross-reacted with the antigens from P.1 (Gamma) and B.1.617.2 (Delta) variants of concern. Discussion: Together, these results demonstrate that immune surveillance assays can be rapidly and reliably established when centralized testing is not available or not yet validated, allowing for robust immune surveillance.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Antivirais
6.
NPJ Vaccines ; 7(1): 118, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224247

RESUMO

Using our strongly immunogenic SmT1 SARS-CoV-2 spike antigen platform, we developed antigens based on the Beta & Delta variants of concern (VOC). These antigens elicited higher neutralizing antibody activity to the corresponding variant than comparable vaccine formulations based on the original reference strain, while a multivalent vaccine generated cross-neutralizing activity in all three variants. This suggests that while current vaccines may be effective at reducing severe disease to existing VOC, variant-specific antigens, whether in a mono- or multivalent vaccine, may be required to induce optimal immune responses and reduce infection against arising variants.

7.
Commun Biol ; 5(1): 933, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085335

RESUMO

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Anticorpos Monoclonais , Cricetinae , Humanos , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética
8.
Clin Transl Immunology ; 11(3): e1380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356067

RESUMO

Objectives: Antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in detecting previous exposures and analyzing vaccine-elicited immune responses. Here, we describe a scalable solution to detect and quantify SARS-CoV-2 antibodies, discriminate between natural infection- and vaccination-induced responses, and assess antibody-mediated inhibition of the spike-angiotensin converting enzyme 2 (ACE2) interaction. Methods: We developed methods and reagents to detect SARS-CoV-2 antibodies by enzyme-linked immunosorbent assay (ELISA). The main assays focus on the parallel detection of immunoglobulin (Ig)Gs against the spike trimer, its receptor binding domain (RBD) and nucleocapsid (N). We automated a surrogate neutralisation (sn)ELISA that measures inhibition of ACE2-spike or -RBD interactions by antibodies. The assays were calibrated to a World Health Organization reference standard. Results: Our single-point IgG-based ELISAs accurately distinguished non-infected and infected individuals. For seroprevalence assessment (in a non-vaccinated cohort), classifying a sample as positive if antibodies were detected for ≥ 2 of the 3 antigens provided the highest specificity. In vaccinated cohorts, increases in anti-spike and -RBD (but not -N) antibodies are observed. We present detailed protocols for serum/plasma or dried blood spots analysis performed manually and on automated platforms. The snELISA can be performed automatically at single points, increasing its scalability. Conclusions: Measuring antibodies to three viral antigens and identify neutralising antibodies capable of disrupting spike-ACE2 interactions in high-throughput enables large-scale analyses of humoral immune responses to SARS-CoV-2 infection and vaccination. The reagents are available to enable scaling up of standardised serological assays, permitting inter-laboratory data comparison and aggregation.

9.
J Med Chem ; 65(19): 13198-13215, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36126059

RESUMO

DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods. Structure-based drug design efforts along with optimization of cellular potency and ADME ultimately led to the identification of RP-6685: a potent, selective, and orally bioavailable Polθ inhibitor that showed in vivo efficacy in an HCT116 BRCA2-/- mouse tumor xenograft model.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias Ovarianas , Animais , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Feminino , Humanos , Camundongos
10.
J Biotechnol ; 326: 21-27, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33301853

RESUMO

Recombinant forms of the spike protein of SARS-CoV-2 and related viruses have proven difficult to produce with good yields in mammalian cells. Given the panoply of potential COVID-19 diagnostic tools and therapeutic candidates that require purified spike protein and its importance for ongoing SARS-CoV-2 research, we have explored new approaches for spike production and purification. Three transient gene expression methods based on PEI-mediated transfection of CHO or HEK293 cells in suspension culture in chemically-defined media were compared for rapid production of full-length SARS-CoV-2 spike ectodomain. A high-cell-density protocol using DXB11-derived CHOBRI/55E1 cells gave substantially better yields than the other methods. Different forms of the spike ectodomain were expressed, including the wild-type SARS-CoV-2 sequence and a mutated form (to favor expression of the full-length spike ectodomain stabilized in pre-fusion conformation), with and without fusion to putative trimerization domains. An efficient two-step affinity purification method was also developed. Ultimately, we have been able to produce highly homogenous preparations of full-length spike, both monomeric and trimeric, with yields of 100-150 mg/L in the harvested medium. The speed and productivity of this method support further development of CHO-based approaches for recombinant spike protein manufacturing.


Assuntos
Domínios Proteicos , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus/genética , Animais , Células CHO , Cricetulus , Expressão Gênica , Células HEK293 , Humanos , SARS-CoV-2 , Transfecção
11.
Sci Rep ; 11(1): 21849, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750472

RESUMO

The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.


Assuntos
Adjuvantes Imunológicos/química , Antígenos Arqueais/química , Vacinas contra COVID-19/uso terapêutico , Lipídeos/química , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Peso Corporal , COVID-19/terapia , Chlorocebus aethiops , Cricetinae , Citocinas/metabolismo , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Passiva , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Peptídeos/química , Domínios Proteicos , SARS-CoV-2 , Receptores Toll-Like/imunologia , Células Vero , Carga Viral , Soroterapia para COVID-19
12.
Sci Rep ; 11(1): 21601, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750399

RESUMO

SARS-CoV-2 variants of concern (VOCs) have emerged worldwide, with implications on the spread of the pandemic. Characterizing the cross-reactivity of antibodies against these VOCs is necessary to understand the humoral response of non-hospitalized individuals previously infected with SARS-CoV-2, a population that remains understudied. Thirty-two SARS-CoV-2-positive (PCR-confirmed) and non-hospitalized Canadian adults were enrolled 14-21 days post-diagnosis in 2020, before the emergence of the B.1.351 (also known as Beta), B.1.617.2 (Delta) and P.1 (Gamma) VOCs. Sera were collected 4 and 16 weeks post-diagnosis. Antibody levels and pseudo-neutralization of the ectodomain of SARS-CoV-2 spike protein/human ACE-2 receptor interaction were analyzed with native, B.1.351, B.1.617.2 and P.1 variant spike proteins. Despite a lower response observed for the variant spike proteins, we report evidence of a sustained humoral response against native, B.1.351, B.1.617.2 and P.1 variant spike proteins among non-hospitalized Canadian adults. Furthermore, this response inhibited the interaction between the spike proteins from the different VOCs and ACE-2 receptor for ≥ 16 weeks post-diagnosis, except for individuals aged 18-49 years who showed no inhibition of the interaction between B.1.617.1 or B.1.617.2 spike and ACE-2. Interestingly, the affinity (KD) measured between the spike proteins (native, B.1.351, B.1.617.2 and P.1) and antibodies elicited in sera of infected and vaccinated (BNT162b2 and ChAdOx1 nCoV-19) individuals was invariant. Relative to sera from vaccine-naïve (and previously infected) individuals, sera from vaccinated individuals had higher antibody levels (as measured with label-free SPR) and more efficiently inhibited the spike-ACE-2 interactions, even among individuals aged 18-49 years, showing the effectiveness of vaccination.


Assuntos
Anticorpos Antivirais/química , Vacinas contra COVID-19 , COVID-19/sangue , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus , Adolescente , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/imunologia , Área Sob a Curva , Vacina BNT162 , Teste de Ácido Nucleico para COVID-19 , ChAdOx1 nCoV-19 , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Cinética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Ligação Proteica , SARS-CoV-2 , Vacinação , Adulto Jovem
13.
Sci Immunol ; 5(52)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033173

RESUMO

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , COVID-19 , Infecções por Coronavirus/virologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
14.
Methods Mol Biol ; 1850: 1-16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242676

RESUMO

Transient gene expression in human embryo kidney 293 (HEK293) cells is an established approach for the rapid production of large amounts of recombinant proteins (r-proteins). Milligram to gram quantities of r-proteins can be typically obtained within less than 10 days following transfection. In this chapter, we describe a simple and robust transfection process of suspension-growing human embryo kidney 293 cells using two commercially available serum-free media and polyethylenimine as the transfection reagent. This chapter provides examples for the production and purification of a his-tagged recombinant protein and two monoclonal antibodies.


Assuntos
Transfecção/métodos , Meios de Cultura Livres de Soro , Células HEK293 , Humanos , Polietilenoimina/química , Proteínas Recombinantes/genética
16.
J Biomol Screen ; 16(3): 363-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343600

RESUMO

The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Canais Iônicos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virais/metabolismo , Cromatografia Líquida , Humanos , Canais Iônicos/genética , Canais Iônicos/isolamento & purificação , Lipossomos/química , Lipossomos/metabolismo , Meliteno/metabolismo , Permeabilidade , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Sensibilidade e Especificidade , Bibliotecas de Moléculas Pequenas , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA