Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(8): 9502-9514, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715900

RESUMO

Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane. On-axis modulation of greater than 30 dB is achieved at incident beam intensities as low as 100 W/cm2 with response times under 200 µs, at initial solution transparency above 70%. No evidence of laser-induced degradation is observed for the highest intensities used. Numerical modeling of experimental data reveals thermo-optic coefficients of up to -1.3 × 10-3 /K, which, to our knowledge, is the highest observed to date in such nanoparticle suspensions.

2.
Sci Rep ; 6: 36876, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906156

RESUMO

Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of otherwise inaccessible odors. Chemical sampling and detection experiments quantified two modes of operation with the artificial nose-active sniffing and continuous inspiration-and demonstrated an increase in odorant detection by a factor of up to 18 for active sniffing. A 16-fold improvement in detection was demonstrated with a commercially-available explosives detector by applying this bio-inspired design principle and making the device "sniff" like a dog. These lessons learned from the dog may benefit the next-generation of vapor samplers for explosives, narcotics, pathogens, or even cancer, and could inform future bio-inspired designs for optimized sampling of odor plumes.


Assuntos
Nariz Eletrônico , Impressão Tridimensional , Olfato , Animais , Biomimética , Cães , Nariz/anatomia & histologia , Nariz/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA