Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Clin Endocrinol (Oxf) ; 98(1): 41-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35514026

RESUMO

OBJECTIVE: Patients with congenital adrenal hyperplasia (CAH) in developing countries have limited access to appropriate laboratory facilities for diagnosis and follow-up. The aim of this study is to evaluate steroid measurement in hair as a diagnostic tool to identify and monitor CAH in these patients. DESIGN: A method was developed to measure steroids in hair, the stability of steroids in hair was assessed, and the concentration range in healthy volunteers was determined. Hair samples of patients, before and after starting therapy, were transported at ambient temperature to The Netherlands for analysis. PATIENTS: Twenty-two Indonesian CAH patients and 84 healthy volunteers participated. MEASUREMENTS: Cortisol, 17-hydroxyprogesterone (17OHP), androstenedione, and testosterone in hair were measured by liquid chromatography with tandem mass spectrometry. RESULTS: Steroids in hair could be measured and remained stable (<4.9% deviation) for at least 3 weeks at 4°C and 30°C. In each of the untreated patients, hair concentrations of 17OHP (9.43-1135 pmol/g), androstenedione (36.1-432 pmol/g), and testosterone (2.85-69.2 pmol/g) were all above the upper limit of the corresponding range in healthy volunteers; 5.5 pmol/g, 13 pmol/g, and 1.8 pmol/g, respectively. After starting glucocorticoid treatment, the steroid concentrations in the hair of CAH patients decreased significantly for androstenedione (73%) and testosterone (59%) after 6 months. CONCLUSIONS: CAH could be confirmed in Indonesian patients based on the concentration of 17OHP, androstenedione, and testosterone in hair, and a treatment effect was observed. These findings open up opportunities to diagnose and/or monitor CAH in developing countries with a simple noninvasive technique.


Assuntos
Hiperplasia Suprarrenal Congênita , Humanos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Indonésia , Esteroides/uso terapêutico , Cabelo , Testosterona
2.
J Urol ; 196(4): 1279-86, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27185613

RESUMO

PURPOSE: A readily available artificial urinary conduit might be substituted for autologous bowel in standard urinary diversions and minimize bowel associated complications. However, the use of large constructs remains challenging as host cellular ingrowth and/or vascularization is limited. We investigated large, reinforced, collagen based tubular constructs in a urinary diversion porcine model and compared subcutaneously pre-implanted constructs to cell seeded and basic constructs. MATERIALS AND METHODS: Reinforced tubular constructs were prepared from type I collagen and biodegradable Vicryl® meshes through standard freezing, lyophilization and cross-linking techniques. Artificial urinary conduits were created in 17 female Landrace pigs, including 7 with a basic untreated construct, 5 with a construct seeded with autologous urothelial and smooth muscle cells, and 5 with a free graft formed by subcutaneous pre-implantation of a basic construct. All pigs were evaluated after 1 month. RESULTS: The survival rate was 94%. At evaluation 1 basic and 1 cell seeded conduit were occluded. Urinary flow was maintained in all conduits created with pre-implanted constructs. Pre-implantation of the basic construct resulted in a vascularized tissue tube, which could be used as a free graft to create an artificial conduit. The outcome was favorable compared to that of the other conduits. Urinary drainage was better, hydroureteronephrosis was limited and tissue regeneration was improved. CONCLUSIONS: Subcutaneous pre-implantation of a basic reinforced tubular construct resulted in a vascularized autologous tube, which may potentially replace bowel in standard urinary diversions. To our knowledge we introduce a straightforward 2-step procedure to create artificial urinary conduits in a large animal model.


Assuntos
Bioprótese , Colágeno Tipo I/química , Poliglactina 910 , Engenharia Tecidual/métodos , Derivação Urinária/métodos , Animais , Feminino , Teste de Materiais , Modelos Animais , Suínos , Bexiga Urinária/cirurgia
4.
Curr Urol Rep ; 16(1): 465, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25404179

RESUMO

Reconstruction of long ureteral defects often warrants the use of graft tissue and extensive surgical procedures to maintain the safe transport of urine from the kidneys to the urinary bladder. Complication risks, graft failure-related morbidity, and the lack of suitable tissue are major concerns. Tissue engineering might offer an alternative treatment approach in these cases, but ureteral tissue engineering is still an underreported topic in current literature. In this review, the most recent published data regarding ureteral tissue engineering are presented and evaluated, with a focus on cell sources, implantation strategies, and (bio)materials.


Assuntos
Procedimentos de Cirurgia Plástica , Engenharia Tecidual , Ureter/cirurgia , Animais , Humanos
5.
BJU Int ; 114(3): 447-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25302355

RESUMO

OBJECTIVE: To compare the regenerative capacity of diseased bladder in a large animal model of bladder exstrophy with regeneration in healthy bladder using a highly porous collagen scaffold. MATERIALS AND METHODS: Highly porous bovine type I collagen scaffolds with a diameter of 32 mm were prepared. In 12 fetal sheep a bladder exstrophy was surgically created at 79 days' gestation. Lambs were born at full term (140 days' gestation). After 1 week the bladder lesion was reconstructed and augmented with a collagen scaffold (group 1). In nine normal newborn lambs the bladder was augmented with a collagen scaffold 1 week after birth (group 2). Functional (video-urodynamics) and histological evaluation was performed at 1 and 6 months after surgery. RESULTS: The survival rate was 58% in group 1 and 100% in group 2. Cystograms were normal in all lambs, besides low-grade reflux in both groups. Urodynamics showed comparable capacity between both groups and a trend to lower compliance in group 1. Histological evaluation at 1 month revealed a non-confluent urothelial layer, an immature submucosa, and initial ingrowth of smooth muscle cells. At 6 months both groups showed normal urothelial lining, standard extracellular matrix development, and smooth muscle cell ingrowth. CONCLUSIONS: Bladder tissue regeneration with a collagen scaffold in a diseased bladder model and in healthy bladder resulted in comparable functional and histological outcome, with a good quality of regenerated tissue involving all tissue layers. Improvements may still be needed for larger augmentations or more severely diseased bladders.


Assuntos
Extrofia Vesical/patologia , Colágeno , Matriz Extracelular/patologia , Engenharia Tecidual , Alicerces Teciduais , Bexiga Urinária/patologia , Animais , Animais Recém-Nascidos , Bovinos , Modelos Animais de Doenças , Miócitos de Músculo Liso , Regeneração , Ovinos , Urodinâmica
6.
J Urol ; 190(1): 341-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23306090

RESUMO

PURPOSE: We developed an experimental ex vivo organoid bladder mucosal model that can be used for experimental research purposes to create alternatives to current animal models. MATERIALS AND METHODS: We developed an ex vivo organoid bladder mucosal model by immobilizing a type I collagen scaffold on the bottom of a Transwell® insert, creating a 2-compartment system. Mucosal biopsies from porcine bladders were placed on top of the scaffold and cultured in different mediums. We evaluated the morphological aspects of biopsy tissue. Cultured samples were assessed by scanning electron microscopy, and immunohistochemical and histochemical staining for cell identification, proliferation and morphology. RESULTS: Cells remained viable in Dulbecco's modified Eagle's medium/F-12 and smooth muscle cell medium for up to 3 weeks. The mucosa retained normal morphological characteristics for up to 1 week. Cells (mostly urothelial cells) proliferated and fully covered the scaffold surface within 3 weeks. CONCLUSIONS: We developed an experimental ex vivo organoid model of bladder mucosa for preclinical experimental research. This model could be used for high volume screening for pharmacology and toxicology experiments. It has the potential to replace currently used animal models.


Assuntos
Modelos Animais , Miócitos de Músculo Liso/metabolismo , Engenharia Tecidual , Bexiga Urinária/citologia , Urotélio/citologia , Animais , Biópsia por Agulha , Células Cultivadas , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Músculo Liso/citologia , Músculo Liso/metabolismo , Organoides/metabolismo , Sensibilidade e Especificidade , Suínos , Bexiga Urinária/patologia , Urotélio/fisiologia
7.
J Mater Sci Mater Med ; 24(2): 325-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23135410

RESUMO

Bone morphogenetic proteins (BMPs) are the most potent osteoinductive growth factors. However, a delivery system is essential to take advantage of the osteoinductive effect of BMPs. The purpose of this study was to develop a sustained delivery system for recombinant human bone morphogenetic protein-2 (BMP-2). We covalently attached heparin to a cross-linked collagen type I coated tricalciumphosphate/hydroxyapatite (TCP/HA) bone substitute and subsequently loaded it with BMP-2. To systematically evaluate the contribution of each component with respect to the binding and release of BMP-2, six constructs were prepared and characterized: TCP/HA, TCP/HA with collagen (TCP/HACol), and TCP/HA with collagen and heparin (TCP/HAColHep) with and without BMP-2 (B). More BMP-2 bound to the TCP/HAColHep + B (92.9 ± 4.8 ng BMP-2/mg granule) granules as compared to the TCP/HACol + B (69.0 ± 9.6 ng BMP-2/mg granule) and TCP/HA + B granules (62.9 ± 5.4 ng BMP-2/mg granule). No difference in release pattern was found between the TCP/HA + B and TCP/HACol + B granules. Up to day 14, BMP-2 was still bound to the TCP/HAColHep + B granules, whereas most BMP had been released from TCP/HACol + B and TCP/HA + B granules at that time. After 21 days most BMP-2 also had been released from the TCP/HAColHep + B granules. The local and sustained delivery system for BMP-2 developed in this study may be useful as a carrier for BMP-2 and could possibly enhance bone regeneration efficacy for the treatment of large bone defects.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/análise , Colágeno/química , Portadores de Fármacos/análise , Durapatita/química , Heparina/química , Animais , Proteína Morfogenética Óssea 2/farmacocinética , Substitutos Ósseos/análise , Substitutos Ósseos/química , Substitutos Ósseos/farmacocinética , Células CHO , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Cricetinae , Cricetulus , Preparações de Ação Retardada , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Nanopartículas/análise , Nanopartículas/química
8.
Tissue Eng Part A ; 27(1-2): 10-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971880

RESUMO

Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida. Impact statement Prenatal closure of fetal skin in case of spina bifida prevents damage to the spinal cord. Closure of the defect is challenging and may result in postnatal growth malformations. In this study, the postnatal effects of a prenatally applied collagen scaffold functionalized with heparin and vascular endothelial growth factor (VEGF)/fibroblast growth factor (FGF) were investigated. An increase of the surface area of regenerated skin ("growing with the child") and generation of hair follicles was observed. Gene expression levels resembled those of native skin with respect to the extracellular matrix and hair follicles. Overall, in utero closure of skin defects using heparin/VEGF/FGF functionalized collagen scaffolds results in long-term skin regeneration.


Assuntos
Colágeno , Regeneração , Pele , Alicerces Teciduais , Animais , Matriz Extracelular , Feminino , Fator 2 de Crescimento de Fibroblastos , Gravidez , Ovinos , Pele/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular
9.
J Vasc Surg ; 52(5): 1330-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20678883

RESUMO

OBJECTIVE: Despite the efficacy of collagen in femoral artery pseudoaneurysm treatment, as reported in one patient study, its use has not yet gained wide acceptance in clinical practice. In this particular study, the collagen was not described in detail. To further investigate the potential of collagen preparations, we prepared and characterized highly purified injectable fibrillar type I collagen and evaluated its use for femoral artery pseudoaneurysm (PSA) treatment in vivo using a pig model. METHODS: Purified fibrillar type I collagen was characterized using electron microscopy. The effect of three different sterilization procedures, ie, hydrogen peroxide gas plasma (H2O2), ethylene oxide gas (EtO), and gamma irradiation, was studied on both SDS-PAGE and platelet aggregation. Different collagen injectables were prepared (3%, 4%, and 5%) and tested using an injection force test applying a 21-gauge needle. To evaluate the network characteristics of the injectable collagen, the collagen was suspended in phosphate buffered saline (PBS) at 37°C and studied both macroscopically and electron microscopically. To determine whether the collagen induced hemostasis in vivo, a pig PSA model was used applying a 4% EtO sterilized collagen injectable, and evaluation by angiography and routine histology. RESULTS: Electron microscopy of the purified type I collagen revealed intact fibrils with a distinct striated pattern and a length<300 µm. Both SDS-PAGE and platelet aggregation analysis of the sterilized collagen indicated no major differences between EtO and H2O2 sterilization, although gamma-irradiated collagen showed degradation products. Both 3% and 4% (w/v) collagen suspensions were acceptable with respect to the force used (<50 N). The 4% suspension was selected as the preferred injectable collagen, which formed a dense network under physiologic conditions. Testing the collagen in vivo (n=5), the angiograms revealed that the PSA partly or completely coagulated. Histology confirmed the network formation, which was surrounded by thrombus. CONCLUSIONS: Collagen injectables were prepared and EtO sterilized without major loss of structural integrity and platelet activity. In vivo, the injectable collagen formed a dense network and triggered (partial) local hemostasis. Although optimization is needed, an injectable collagen may be used as a therapeutic agent for femoral PSA treatment.


Assuntos
Falso Aneurisma/tratamento farmacológico , Colágeno Tipo I/administração & dosagem , Artéria Femoral/efeitos dos fármacos , Falso Aneurisma/sangue , Falso Aneurisma/diagnóstico por imagem , Falso Aneurisma/patologia , Animais , Bovinos , Colágeno Tipo I/isolamento & purificação , Colágeno Tipo I/efeitos da radiação , Colágeno Tipo I/ultraestrutura , Modelos Animais de Doenças , Estabilidade de Medicamentos , Etanol/química , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/patologia , Raios gama , Hemostasia/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/química , Injeções Intralesionais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Agregação Plaquetária/efeitos dos fármacos , Radiografia , Esterilização/métodos , Suínos , Fatores de Tempo
10.
Protein Expr Purif ; 69(1): 76-82, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19733244

RESUMO

Large-scale production of recombinant rat vascular endothelial growth factor (rrVEGF-164) is desirable for angiogenic studies. In this study, biologically active recombinant rat vascular endothelial growth factor (rrVEGF-164) was cloned and expressed in the yeast Pichia pastoris, and large-scale production was performed by fermentation. cDNA encoding VEGF-164 was prepared from embryonic rat tissue RNA, and a recombinant pPIC9HV/rVEGF-164 plasmid, containing an AOX1 promoter, was constructed. The methylotrophic P. pastoris was used as the eukaryotic expression system. After transformation, rrVEGF-164 was produced by fermentation ( approximately 124mg/L) and purified by heparin affinity chromatography. SDS-PAGE indicated that rrVEGF-164 was produced as a disulphide-bridged dimer of 48kDa which was purified to near homogeneity by heparin affinity chromatography in a large quantity. A bioassay indicated a three- to fivefold increase in endothelial cell proliferation after 3days, due to the addition of the produced rrVEGF-164. The produced rrVEGF-164 showed a higher biological activity than a commercially available, mouse cell line-based, growth factor. In conclusion, using the P. pastoris expression system we were able to produce biologically active rat VEGF-164 in high quantities and this may provide a powerful tool for basic and applied life sciences.


Assuntos
Multimerização Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Cromatografia de Afinidade , Clonagem Molecular , DNA Complementar/genética , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Fermentação , Vetores Genéticos/genética , Humanos , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ratos , Proteínas Recombinantes/química , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética
11.
J Vasc Interv Radiol ; 21(7): 1078-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20382547

RESUMO

PURPOSE: To prepare a porcine model for femoral artery pseudoaneurysm via a one-step surgical procedure without the need for microsurgery. MATERIALS AND METHODS: This pseudoaneurysm model involves the preparation of an arteriovenous shunt between the femoral artery and femoral vein in which approximately 2 cm of the vein is segmented by proximal and distal closure with the use of ligatures. The femoral pseudoaneurysm models were evaluated by angiography, Doppler auscultation, and histologic examination. RESULTS: In seven of eight pigs, angiography and Doppler auscultation showed that the pseudoaneurysm models were open and that there was communication between the pseudoaneurysm model and the femoral artery. The mean length (+/-SD) of the pseudoaneurysm model was 1.9 cm +/- 0.3 (n= 7), with a neck region of 4 mm. Histologic analysis confirmed that pseudoaneurysm models were open and no thrombi were observed. CONCLUSIONS: The principal advantages of this model are the location of the pseudoaneurysm model, the short period of clamping, and the controllable size. The pig pseudoaneurysm model is straightforward and reproducible, and may serve as a useful tool in the evaluation of interventional strategies for treatment of pseudoaneurysms.


Assuntos
Anastomose Cirúrgica/métodos , Falso Aneurisma/fisiopatologia , Modelos Animais de Doenças , Artéria Femoral/fisiopatologia , Artéria Femoral/cirurgia , Veia Femoral/fisiopatologia , Veia Femoral/cirurgia , Animais , Humanos , Doença Arterial Periférica , Suínos
12.
ACS Biomater Sci Eng ; 4(9): 3282-3290, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30221191

RESUMO

Clinical implementation of novel products for tissue engineering and regenerative medicine requires a validated sterilization method. In this study, we investigated the effect of γ-irradiation and EtO degassing on material characteristics in vitro and the effect on template remodeling of hybrid tubular constructs in a large animal model. Hybrid tubular templates were prepared from type I collagen and Vicryl polymers and sterilized by 25 kGray of γ-irradiation or EtO degassing. The in vitro characteristics were extensively studied, including tensile strength analysis and degradation studies. For in vivo evaluation, constructs were subcutaneously implanted in goats for 1 month to form vascularized neo-tissue. Macroscopic and microscopic appearances of the γ- and EtO-sterilized constructs slightly differed due to additional processing required for the COL-Vicryl-EtO constructs. Regardless of the sterilization method, incubation in urine resulted in fast degradation of the Vicryl polymer and decreased strength (<7 days). Incubation in SBF was less invasive, and strength was maintained for at least 14 days. The difference between the two sterilization methods was otherwise limited. In contrast, subcutaneous implantation showed that the effect of sterilization was considerable. A well-vascularized tube was formed in both cases, but the γ-irradiated construct showed an organized architecture of vasculature and was mechanically more comparable to the native ureter. Moreover, the γ-irradiated construct showed advanced tissue remodeling as shown by enhanced ECM production. This study shows that the effect of sterilization on tissue remodeling cannot be predicted by in vitro analyses alone. Thus, validated sterilization methods should be incorporated early in the development of tissue engineered products, and this requires both in vitro and in vivo analyses.

13.
Tissue Eng Part A ; 24(11-12): 863-872, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29105596

RESUMO

Repair of long ureteral defects often requires long graft tissues and extensive surgery. This is associated with complications, including a lack of suitable tissue and graft site morbidity. Tissue engineering may provide an attractive alternative to the autologous graft tissues. In this study, ureteral repair using (preimplanted) tubular collagen-Vicryl templates was evaluated in a new goat model. Tubular templates were prepared from tubularized Vicryl meshes and 0.7% type-I collagen (length = 6 cm, inner diameter = 6 mm, wall thickness = 3 mm). In total, twelve goats were used and evaluated after 3 months. Eight goats were implanted with the collagen-Vicryl templates and in four goats the templates were first preimplanted in the subcutis and subsequently used as ureteral graft. Template implantation was successful in 92% of the goats(11/12). During follow-up, 82% of the animals (9/11) survived without signs of discomfort. Two animals were sacrificed prematurely due to kidney perforation by the stent and urine leakage. Two other animals presented with stenosis of the neoureter due to stent migration. After preimplantation, the templates were remodeled mostly to autologous tissue with similar mechanical characteristics as the native ureter. Goats grafted with preimplanted templates presented with predominantly healthy kidneys, whereas the goats grafted with the collagen-Vicryl templates presented with fibrotic and inflamed regions in the kidneys. The use of preimplanted tissue templates showed favorable results compared with direct functional implantation of the templates. Partial remodeling toward autologous tissue and similar mechanical characteristics likely improved the integration in the ureteral tissue. Preimplantation of tissue-engineered templates should therefore be considered when two-stage procedures using a nephrostomy catheter are indicated or when planning allows for additional time to treatment.


Assuntos
Engenharia Tecidual/métodos , Ureter/cirurgia , Doenças Ureterais/cirurgia , Animais , Modelos Animais de Doenças , Cabras , Stents , Obstrução Ureteral/cirurgia
14.
Tissue Eng Part A ; 24(1-2): 11-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322621

RESUMO

INTRODUCTION: Tissue engineering may become an alternative to current bladder augmentation techniques. Large scaffolds are needed for clinically significant augmentation, but can result in fibrosis and graft shrinkage. The purpose of this study was to investigate the use of multiple scaffolds instead of one large scaffold, to enhance bladder tissue regeneration and bladder capacity. Second, acellular collagen, collagen-heparin, and collagen-heparin scaffolds with growth factors (GFs) were used and the biological activity of the different scaffolds was compared in a large animal model. MATERIALS AND METHODS: Scaffolds were made of bovine type I collagen with or without heparin (Ø = 3.2 cm). Collagen-heparin scaffolds were loaded with GFs, vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and heparin-binding epidermal growth factor (HB-EGF). Three identical scaffolds prepared from collagen (COL-group), collagen with heparin (COLHEP-group), or collagen-heparin with growth factors (COLHEPGF-group) were implanted in one porcine bladder. The outcome was compared with sham-operated animals (Sham-group), in which no scaffold was used. Urodynamic evaluation was performed before surgery and 3 months after bladder reconstruction, together with histological evaluation. RESULTS: Survival rate was 92%, 12 animals completed the study, 3 of every group, 1 animal developed peritonitis due to urine leakage and was sacrificed. The regenerated area was largest in the COLHEP-group, and least in the COL-group (p = 0.002). Histological evaluation revealed a normal urothelial layer and good angiogenesis in all groups, and comparable ingrowth of smooth muscle cells. Urodynamics showed no statistically significant differences in bladder capacity and compliance between groups. Bladder capacity and compliance was very high in this animal model, which made it impossible to study the increase due to augmentation. CONCLUSIONS: Implantation of multiple collagen-heparin scaffolds in one bladder is feasible in a porcine model, resulting in tissue almost indistinguishable from native tissue involving all cell layers of the bladder. Collagen scaffolds with heparin incorporated resulted in a larger area of regenerated tissue. To reach clinically significant augmentation, multiple larger collagen-heparin scaffolds, with or without GFs, need to be tested to study the largest possible diameter of scaffold and number of used scaffolds still resulting in well-vascularized tissue.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Bexiga Urinária/metabolismo , Animais , Colágeno/química , Feminino , Fator 2 de Crescimento de Fibroblastos/química , Heparina/química , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/química , Suínos , Urodinâmica
15.
Biomaterials ; 28(6): 1123-31, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17113636

RESUMO

An important issue in tissue engineering is the vascularisation of the implanted construct, which often takes several weeks. In vivo, the growth factors VEGF and FGF2 show a combined effect on both angiogenesis and maturation of blood vessels. Therefore, we hypothesise that the addition of these growth factors to an acellular construct increases blood vessel formation and maturation. To systematically evaluate the contribution of each scaffold component with respect to tissue response and in particular to blood vessel formation, five porous scaffolds were prepared and characterised, viz.: collagen, collagen with heparin, and collagen with heparin plus one or two growth factors (rrFGF2 and rrVEGF). Scaffolds were subcutaneously implanted in 3 months old Wistar rats. Of all scaffolds tested, the one with a combination of growth factors displayed the highest density of blood vessels (type IV collagen) and most mature blood vessels (smooth muscle actin). In addition, no hypoxic cells were found in this scaffold at day 7 and 21 (hypoxia inducible factor 1-alpha). These results indicate that the addition of both FGF2 and VEGF to an acellular construct enhances an early mature vasculature. This opens prospects for (acellular) tissue-engineered constructs in conditions as ischaemic heart disease or diabetic ulcers.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Colágeno/química , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Heparina/química , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Bioprótese , Prótese Vascular , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Sistema Livre de Células , Células Cultivadas , Colágeno/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/química , Fator 2 de Crescimento de Fibroblastos/química , Heparina/administração & dosagem , Implantes Experimentais , Teste de Materiais , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/química
16.
J Tissue Eng Regen Med ; 11(8): 2241-2249, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-26880718

RESUMO

The use of bowel tissue for urinary diversion can be associated with severe complications, and regenerative medicine may circumvent this by providing an engineered conduit. In this study, a novel tubular construct was identified for this purpose. Three constructs (diameter 15 mm) were prepared from type I collagen and either (a) a semi-biodegradable Vypro II polymer (COL-Vypro), (b) a rapidly biodegradable Vicryl polymer (COL-Vicryl) or (c) an additional collagenous layer (COL-DUAL). After freezing, lyophilization and crosslinking, all constructs showed a porous structure with a two-fold higher strength for the polymer-containing constructs. These constructs were connected to full bladder defects of 11 female pigs and evaluated after 1 (n = 4) or 3 months (n = 5). With respect to surgical handling, the polymer-containing constructs were superior. All pigs voided normally without leakage and the survival rate was 82%. For the implanted COL-Vypro constructs (8/9), stone formation was observed. COL-DUAL and COL-Vicryl showed better biocompatibility and only small remnants were found 1 month post-implantation. Histological and immunohistochemical analysis showed the best regeneration for COL-Vicryl with respect to urothelium; muscle pedicles and elastin formation were best developed in the COL-Vicryl constructs. In this study, COL-Vicryl constructs were superior in both biocompatibility and bladder tissue regeneration and have high potential for artificial urinary diversions. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Bioprótese , Teste de Materiais , Bexiga Urinária , Derivação Urinária/métodos , Animais , Colágeno Tipo I/química , Feminino , Poliglactina 910/química , Polipropilenos/química , Suínos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/cirurgia
17.
Lab Anim ; 51(5): 538-541, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28948892

RESUMO

It is common to test medical devices in large animal studies that are or could also be used in humans. In this short report we describe the use of a ureteral J-stent for the evaluation of biodegradable tubular constructs for tissue reconstruction, and the regeneration of ureters in Saanen goats. Similarly to a previous study in pigs, the ureteral J-stent was blindly inserted until some resistance was met. During evaluation of the goats after three months, perforation of the renal cortex by the stent was observed in four out of seven animals. These results indicated that blind stent placement was not possible in goats. In four new goats, clinical protocols were followed using X-ray and iodinated contrast fluids to visualize the kidney and stent during stent placement. With this adaptation the stents were successfully placed in the kidneys of these four new goats with minimal additional effort. It is likely that other groups in other fields ran into similar problems that could have been avoided by following clinical protocols. Therefore, we would like to stress the importance of following clinical protocols when using medical devices in animals to prevent unnecessary suffering and to reduce the number of animals needed.


Assuntos
Animais de Laboratório/cirurgia , Stents , Ureter/cirurgia , Animais , Protocolos Clínicos , Cabras , Humanos , Suínos
18.
Adv Exp Med Biol ; 585: 279-95, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17120791

RESUMO

In this chapter, we describe the fundamental aspects of the preparation of molecularly-defined scaffolds for soft tissue engineering, including the tissue response to the scaffolds after implantation. In particular, scaffolds prepared from insoluble type I collagen fibres, soluble type II collagen fibres, insoluble elastin fibres, glycosaminoglycans (GAGs) and growth factors are discussed. The general strategy is to prepare tailor-made "smart" biomaterials which will create a specific microenvironment thus enabling cells to generate new tissues. As an initial step, all biomolecules used were purified to homogeneity. Next, porous scaffolds were prepared using freezing and lyophilisation, and these scaffolds were crosslinked using carbodiimides. Crosslinking resulted in mechanically stronger scaffolds and allowed the covalent incorporation of GAGs. Scaffold characteristics were controlled to prepare tailor-made scaffolds by varying e.g. collagen to elastin ratio, freezing rate, degree of crosslinking, and GAGs attachment. The tissue response to scaffolds was evaluated following subcutaneous implantations in rats. Crosslinked scaffolds maintained their integrity and supported the formation of new extracellular matrix. Collagen-GAG scaffolds loaded with basic fibroblast growth factor significantly enhanced neovascularisation and tissue remodelling. Animal studies of two potential applications of these scaffolds were discussed in more detail, i.e. for bladder and cartilage regeneration.


Assuntos
Matriz Extracelular/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Biofísica/métodos , Cartilagem , Bovinos , Colágeno/química , Reagentes de Ligações Cruzadas/farmacologia , Elastina/química , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Teste de Materiais , Coelhos
19.
Acta Biomater ; 44: 277-85, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27554020

RESUMO

UNLABELLED: Type I collagen is widely applied as a biomaterial for tissue regeneration. In the extracellular matrix, collagen provides strength but not elasticity under large deformations, a characteristic crucial for dynamic organs and generally imparted by elastic fibers. In this study, a methodology is described to induce elastic-like characteristics in a scaffold consisting of solely type I collagen. Tubular scaffolds are prepared from collagen fibrils by a casting, molding, freezing and lyophilization process. The lyophilized constructs are compressed, corrugated and subsequently chemically crosslinked with carbodiimide in the corrugated position. This procedure induces elastic-like properties in the scaffolds that could be repeatedly stretched five times their original length for at least 1000 cycles. The induced elasticity is entropy driven and can be explained by the introduction of hydrophobic patches that are disrupted upon stretching thus increasing the hydrophobic-hydrophilic interface. The scaffolds are cytocompatible as demonstrated by fibroblast cell culture. In conclusion, a new straightforward technique is described to endow unique elastic characteristics to scaffolds prepared from type I collagen alone. Scaffolds may be useful for engineering of dynamic tissues such as blood vessels, ligaments, and lung. STATEMENT OF SIGNIFICANCE: In this research report, a methodology is presented to introduce elasticity to biomaterials consisting of only type I collagen fibrils. The method comprises physical compression and corrugation in combination with chemical crosslinking. By introducing elasticity to collagen biomaterials, their application in regenerative medicine may be expanded to dynamic organs such as blood vessels, ligaments and lung. The combination of strength and elasticity in one single natural biomaterial may also "simplify" the design of new scaffolds.


Assuntos
Colágeno/química , Elasticidade , Alicerces Teciduais/química , Animais , Bovinos , Morte Celular , Reagentes de Ligações Cruzadas/química , Teste de Materiais , Camundongos , Células NIH 3T3 , Porosidade
20.
Tissue Eng Part A ; 22(1-2): 83-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26441140

RESUMO

Tissue engineering may become an alternative to current bladder augmentation techniques. Large scaffolds are needed for clinically significant augmentation, but can result in fibrosis and graft shrinkage. The purpose of this study was to investigate whether smart acellular collagen-heparin scaffolds with growth factors (GFs) VEGF, FGF2, and HB-EGF enhance bladder tissue regeneration and bladder capacity in a large animal model of diseased bladder. Scaffolds of bovine type I collagen with heparin and VEGF, FGF2, and HB-EGF measuring 3.2 cm in diameter were prepared. In 23 fetal sheep, a bladder exstrophy was surgically created at 79 days of gestation. One week after birth (at full term), the bladder was reconstructed by primary closure (PC group) or using a collagen-heparin scaffold with GFs (COLGF group) and compared to a historical group reconstructed with a collagen scaffold without GFs (COL group). Functional (video urodynamics) and histological evaluation was performed 1 and 6 months after bladder repair. The overall survival rate was 57%. Cystograms were normal in all animals, except for low-grade reflux in all groups. Urodynamics showed no statistically significant differences in bladder capacity and compliance between groups. Histological evaluation at 1 month revealed increased urothelium formation, improved angiogenesis, and enhanced ingrowth of smooth muscle cells (SMCs) in the COLGF group compared to the COL group. At 6 months, improved SMC ingrowth was found in the COLGF group compared to the COL group; both scaffold groups showed normal urothelial lining and standard extracellular matrix development. Bladder regeneration using a collagen-heparin scaffold with VEGF, FGF2, and HB-EGF improved bladder tissue regeneration in a large animal model of diseased bladder. Larger GF-loaded constructs need to be tested to reach clinically significant augmentation.


Assuntos
Colágeno , Fator 2 de Crescimento de Fibroblastos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Bexiga Urinária/fisiologia , Fator A de Crescimento do Endotélio Vascular , Animais , Bovinos , Colágeno/química , Colágeno/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/química , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Ovinos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA