RESUMO
The production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensive guidance on how to increase the degree of atomization through a selection of appropriate experimental conditions and supports. It is based on a rigorous macro-kinetic theory that captures relevant competing processes of nucleation and formation of single atoms stabilized by point defects. The effects of metal-support interactions and deposition parameters on the resulting single atom to nanocluster ratio as well as the role of metal centers formed on point defects in the kinetics of nucleation have been established, thus paving the way to guided synthesis of single atom catalysts. The predictions are supported by experimental results on sputter deposition of Pt on exfoliated hexagonal boron nitride, as imaged by aberration-corrected scanning transmission electron microscopy.
RESUMO
The interpretation of helium ion microscopy (HIM) images of crystalline metal clusters requires microscopic understanding of the effects of He ion irradiation on the system, including energy deposition and associated heating, as well as channeling patterns. While channeling in bulk metals has been studied at length, there is no quantitative data for small clusters. We carry out molecular dynamics simulations to investigate the behavior of gold nanoparticles with diameters of 5-15 nm under 30 keV He ion irradiation. We show that impacts of the ions can give rise to substantial heating of the clusters through deposition of energy into electronic degrees of freedom, but it does not affect channeling, as clusters cool down between consecutive impact of the ions under typical imaging conditions. At the same time, high temperatures and small cluster sizes should give rise to fast annealing of defects so that the system remains crystalline. Our results show that ion-channeling occurs not only in the principal low-index, but also in the intermediate directions. The strengths of different channels are specified, and their correlations with sputtering-yield and damage production is discussed, along with size-dependence of these properties. The effects of planar defects, such as stacking faults on channeling were also investigated. Finally, we discuss the implications of our results for the analysis of HIM images of metal clusters.
RESUMO
A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a nanotextured surface of graphitized carbon nanofibers (GNFs). Our results demonstrate that under these conditions, copper atoms coalesce into nanoparticles securely anchored to the graphitic step edges, limiting their growth to 2-5 nm. The resultant hybrid Cu/GNF material displays high selectivity in the CO2 reduction reaction (CO2RR) for formate production with a faradaic efficiency of ~94% at -0.38 V vs RHE and a high turnover frequency of 2.78 × 106 h-1. The Cu nanoparticles adhered to the graphitic step edges significantly enhance electron transfer to CO2. Long-term CO2RR tests coupled with atomic-scale elucidation of changes in Cu/GNF reveal nanoparticles coarsening, and a simultaneous increase in the fraction of single Cu atoms. These changes in the catalyst structure make the onset of the CO2 reduction potential more negative, leading to less formate production at -0.38 V vs RHE, correlating with a less efficient competition of CO2 with H2O for adsorption on single Cu atoms on the graphitic surfaces, revealed by density functional theory calculations.
RESUMO
The characteristics of two-dimensional (2D) materials can be tuned by low-energy ion irradiation provided that the ion energy is correctly chosen. The optimum ion energy is related to Ethion, the minimum kinetic energy the ion should have to displace an atom from the material. Ethion can be assessed using the binary collision approximation (BCA) when the displacement threshold of the atom is known. However, for some ions the experimental data contradict the BCA results. Using density functional theory molecular dynamics (DFT-MD), we study the collisions of low-energy ions with graphene and hexagonal boron nitride and demonstrate that the BCA can strongly overestimate Ethion because energy transfer takes a finite time, and therefore, chemical interactions of the ion with the target are important. Finally, for all projectiles from H up to Ar, we calculate the values of Ethion required to displace an atom from graphene and h-BN, the archetypal 2D materials.
RESUMO
Controlled production of defects in hexagonal boron nitride (h-BN) through ion irradiation has recently been demonstrated to be an effective tool for adding new functionalities to this material, such as single-photon generation, and for developing optical quantum applications. Using analytical potential molecular dynamics, we study the mechanisms of vacancy creation in single- and multi-layer h-BN under low- and high-fluence ion irradiation. Our results quantify the densities of defects produced by noble gas ions in a wide range of ion energies and elucidate the types and distribution of defects in the target. The simulation data can directly be used to guide the experiment aimed at the creation of defects of particular types in h-BN targets for single-photon emission, spin-selective optical transitions and other applications by using beams of energetic ions.
RESUMO
Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl3 /CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.
RESUMO
Two-dimensional (2D) materials with nanometer-size holes are promising systems for DNA sequencing, water purification, and molecule selection/separation. However, controllable creation of holes with uniform sizes and shapes is still a challenge, especially when the 2D material consists of several atomic layers as, e.g., MoS2, the archetypical transition metal dichalcogenide. We use analytical potential molecular dynamics simulations to study the response of 2D MoS2 to cluster irradiation. We model both freestanding and supported sheets and assess the amount of damage created in MoS2 by the impacts of noble gas clusters in a wide range of cluster energies and incident angles. We show that cluster irradiation can be used to produce uniform holes in 2D MoS2 with the diameter being dependent on cluster size and energy. Energetic clusters can also be used to displace sulfur atoms preferentially from either top or bottom layers of S atoms in MoS2 and also clean the surface of MoS2 sheets from adsorbents. Our results for MoS2, which should be relevant to other 2D transition metal dichalcogenides, suggest new routes toward cluster beam engineering of devices based on 2D inorganic materials.
RESUMO
Focused ion beams perfectly suit for patterning two-dimensional (2D) materials, but the optimization of irradiation parameters requires full microscopic understanding of defect production mechanisms. In contrast to freestanding 2D systems, the details of damage creation in supported 2D materials are not fully understood, whereas the majority of experiments have been carried out for 2D targets deposited on substrates. Here, we suggest a universal and computationally efficient scheme to model the irradiation of supported 2D materials, which combines analytical potential molecular dynamics with Monte Carlo simulations and makes it possible to independently assess the contributions to the damage from backscattered ions and atoms sputtered from the substrate. Using the scheme, we study the defect production in graphene and MoS2 sheets, which are the two most important and wide-spread 2D materials, deposited on a SiO2 substrate. For helium and neon ions with a wide range of initial ion energies including those used in a commercial helium ion microscope (HIM), we demonstrate that depending on the ion energy and mass, the defect production in 2D systems can be dominated by backscattered ions and sputtered substrate atoms rather than by the direct ion impacts and that the amount of damage in 2D materials heavily depends on whether a substrate is present or not. We also study the factors which limit the spatial resolution of the patterning process. Our results, which agree well with the available experimental data, provide not only insights into defect production but also quantitative information, which can be used for the minimization of damage during imaging in HIM or optimization of the patterning process.