Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Water Sci Technol ; 83(2): 309-321, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504696

RESUMO

In Agadir, a water-scarce Moroccan region, municipal and industrial wastewater is tertiary-treated to be reused in golf courses. Wastewater reuse has been constrained by severe clogging of emitters, which caused technical and financial problems. This study aimed to perform an in-depth characterization of the treated wastewater (TWW) in relation to its susceptibility to cause clogging, and to assess the capacity of an aeration post-treatment to reduce the clogging potential. The post-treatment consisted of injecting different airflows (0-33 L/(h Lreactor) into the TWW. The structural, morphological and elemental composition of the clogging matter collected in the irrigation pipeline was characterized using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction and X-ray energy dispersive spectroscopy. The 15-day aeration post-treatment at 16.5 L/(h Lreactor) presented the best cost-benefit ratio. Organic matter was totally degraded. Calcium was reduced by 9%, bicarbonates by 54%. The analysis of the deposits induced by the aeration post-treatment revealed a relevant decrease of the major constituents of the clogging deposits found in the irrigation pipeline. The results show the effectiveness of post-aeration in biodegrading residual organic matter and precipitating several salts, thus reducing the clogging potential.


Assuntos
Irrigação Agrícola , Águas Residuárias
2.
Inorg Chem ; 59(1): 360-366, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31859489

RESUMO

A new ternary phase with a composition Al1+xV2Sn2-x (x = 0.19) has been found during investigation of the Al-V-Sn ternary system. Single-crystal X-ray diffraction measurements reveal that this ternary phase crystallizes with an orthorhombic structure with a = 5.5931(1) Å, b = 18.8017(5) Å, and c = 6.7005(2) Å (space group Cmce). This compound is thus isostructural to the GaV2Sn2 structure type, showing a layered structure composed of vanadium cluster bands formed with pentagonal faces intercalated by Sn atom layers. High-resolution transmission electron microscopy measurements confirm the orthorhombic structure. Regarding lattice perfection, no dislocation could be identified within the probed Al1.19V2Sn1.81 single-crystal lamella. Ab initio calculations reveal a reduction of the density of states at the Fermi level, which could be attributed to both a Hume-Rothery effect combined with strong spd hybridization.

3.
J Nanobiotechnology ; 18(1): 36, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093716

RESUMO

Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups. This study employed cytotoxicity assays, transcriptomics and proteomics to assess their toxicity using NR8383 rat alveolar macrophages as an in vitro model. The study findings indicated that all MWCNT altered ribosomal protein translation, cytoskeleton arrangement and induced pro-inflammatory response. Only functionalized MWCNT alter mTOR signaling pathway in conjunction with increased Lamtor gene expression. Furthermore, the type of functionalization was also important, with cationic MWCNT activating the transcription factor EB and inducing autophagy while the anionic MWCNT altering eukaryotic translation initiation factor 4 (EIF4) and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) signaling pathway as well as upregulation Tlr2 gene expression. This study proposes that MWCNT toxicity mechanisms are functionalization dependent and provides evidence that inflammatory response is a key event of carbon nanotubes toxicity.


Assuntos
Perfilação da Expressão Gênica , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Autofagia , Cátions , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Macrófagos Alveolares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Proteômica , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Sensors (Basel) ; 20(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824582

RESUMO

Scandium aluminum nitride (ScxAl1-xN) films are currently intensively studied for surface acoustic waves (SAW) filters and sensors applications, because of the excellent tradeoff they present between high SAW velocity, large piezoelectric properties and wide bandgap for the intermediate compositions with an Sc content between 10 and 20%. In this paper, the growth of Sc0.09Al0.91N and Sc0.18Al0.82N films on sapphire substrates by sputtering method is investigated. The plasma parameters were optimized, according to the film composition, in order to obtain highly-oriented films. X-ray diffraction rocking-curve measurements show a full width at half maximum below 1.5°. Moreover, high-resolution transmission electron microscopy investigations reveal the epitaxial nature of the growth. Electrical characterizations of the Sc0.09Al0.91N/sapphire-based SAW devices show three identified modes. Numerical investigations demonstrate that the intermediate compositions between 10 and 20% of scandium allow for the achievement of SAW devices with an electromechanical coupling coefficient up to 2%, provided the film is combined with electrodes constituted by a metal with a high density.

5.
Chemphyschem ; 20(5): 719-726, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629795

RESUMO

Here, we study the stress-induced self-organization of Mg2+ and Ni2+ cations in the crystal structure of multiwalled (Mg1-x ,Nix )3 Si2 O5 (OH)4 phyllosilicate nanoscrolls. The phyllosilicate layer strives to compensate size and surface energy difference between the metal oxide and silica sheets by curling. But as soon as the layer grows, the scrolling mechanism becomes a spent force. An energy model proposes secondary compensation of strain: two cations distribute along the nanoscroll spiral in accordance with preferable radii of curvature. To reveal this, we study synthetic (Mg1-x ,Nix )3 Si2 O5 (OH)4 nanoscrolls by the scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDS) technique. For a number of scrolls, we have found indeed a change of Ni concentration with increase in distance from the nanoscroll central axis. The concentration gradient, according to our estimates, can reach 50 at.% over 25 nm of the wall thickness.

6.
Bioconjug Chem ; 29(7): 2248-2256, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29906097

RESUMO

Biocompatible thermoresponsive copolymers based on 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and oligo (ethylene glycol) methacrylate (OEGMA) were grown from the surface of ZnO quantum dots (QDs) by surface initiated atom transfer radical polymerization with activators regenerated by electron transfer (SI-ARGET ATRP) in order to design smart and fluorescent core/shell nanosystems to be used toward cancer cells. Tunable lower critical solution temperature (LCST) values were obtained and studied in water and in culture medium. The complete efficiency of the process was demonstrated by the combination of spectroscopic and microscopic studies. The colloidal behavior of the ZnO/copolymer core/shell QDs in water and in physiological media with temperature was assessed. Finally, the cytotoxicity toward human colon cancer HT29 cells of the core/shell QDs was tested. The results showed that the polymer-capped QDs exhibited almost no toxicity at concentrations up to 12.5 µg.mL-1, while when loaded with doxorubicin hydrochloride (DOX), a higher cytotoxicity and a decreased HT29 cancer cell viability in a short time were observed.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Pontos Quânticos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Coloides , Doxorrubicina/farmacologia , Células HT29 , Humanos , Metacrilatos/química , Polimerização , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Óxido de Zinco
7.
Inorg Chem ; 57(1): 422-434, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29257669

RESUMO

We report on a detailed investigation of the crystal structure and transport properties in a broad temperature range (2-723 K) of the homologous compounds (PbSe)5(Bi2Se3)3m for m = 2, 3. Single-crystal X-ray diffraction data indicate that the m = 2, 3 compounds crystallize in the monoclinic space groups C2/m (No. 12) and P21/m (No. 11), respectively. In agreement with diffraction data, high-resolution transmission electron microscopy analyses carried out on single crystals show that the three-dimensional crystal structures are built from alternating Pb-Se and m Bi-Se layers stacked along the a axis in both compounds. Scanning electron microcopy and electron-probe microanalyses reveal deviations from the nominal stoichiometry, suggesting a domain of existence in the pseudo binary phase diagram at 873 K. The complex atomic-scale structures of these compounds lead to very low lattice thermal conductivities κL that approach the glassy limit at high temperatures. A comparison of the κL values across this series unveiled an unexpected increase with increasing m from m = 1 to m = 3, in contrast to the expectation that increasing the structural complexity should tend to lower the thermal transport. This result points to a decisive role played by the Pb-Se/Bi-Se interfaces in limiting κL in this series. Both compounds behave as heavily doped n-type semiconductors with relatively low electrical resistivity and thermopower values. As a result, moderate peak ZT values of 0.25 and 0.20 at 700 K were achieved in the m = 2, 3 compounds, respectively. The inherent poor ability of these structures to conduct heat suggests that these homologous compounds may show interesting thermoelectric properties when properly optimized by extrinsic dopants.

8.
Nanotechnology ; 26(33): 335605, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26222921

RESUMO

In this work, we developed a new process to covalently graft a thermoresponsive polymer on the surface of fluorescent nanocrystals in order to synthesize materials that combine both responsive and fluorescent properties. For the first time, poly(N-isopropylacrylamide) (PNIPAM) was grown by activator regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) from ZnO quantum dots (QDs) by surface-initiated polymerization. This process allowed the formation of fluorescent and responsive ZnO/PNIPAM core/shell QDs while only requiring the use of a ppm amount of copper for the synthesis. The influence of the nature of the silanized layer and the polymerization time on the properties of the final nanomaterials were investigated. Results clearly evidence that both the PNIPAM layer thickness and the temperature affected the luminescence properties of the core/shell nanoparticles, but also that the PNIPAM layer, when it is thick enough, could stabilize the QDs' optical properties.

9.
Environ Sci Technol ; 48(20): 11901-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25226238

RESUMO

Among trace metal pollutants, zinc is the major one in the rivers from the Paris urban area, such as the Orge River, where Zn concentration in the suspended particulate matter (SPM) can reach 2000 mg/kg in the most urbanized areas. In order to better understand Zn cycling in such urban rivers, we have determined Zn speciation in SPM as a function of both the seasonal water flow variations and the urbanization gradient along the Orge River. Using TEM/SEM-EDX and linear combination fitting (LCF) of EXAFS data at the Zn K-edge, we show that Zn mainly occurs as tetrahedrally coordinated Zn(2+) sorbed to ferrihydrite (37-46%), calcite (0-37%), amorphous SiO2 (0-21%), and organic-P (0-30%) and as octahedrally coordinated Zn(2+) in the octahedral layer of phyllosilicates (18-25%). Moreover, the Zn speciation pattern depends on the river flow rate. At low water flow, Zn speciation changes along the urbanization gradient: geogenic forms of Zn inherited from soil erosion decrease relative to Zn bound to organic-phosphates and amorphous SiO2. At high water flow, Zn speciation is dominated by soil-borne forms of Zn regardless the degree of urbanization, indicating that erosion of Zn-bearing minerals dominates the Zn contribution to SPM under such conditions.


Assuntos
Cidades , Material Particulado/química , Rios , Estações do Ano , Urbanização , Zinco/isolamento & purificação , França , Espectrometria por Raios X , Poluentes Químicos da Água/análise
10.
Angew Chem Int Ed Engl ; 53(11): 2945-50, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24519958

RESUMO

One key challenge in inorganic mesoporous films is the development of oriented mesostructures with vertical channels, and even more challenging is their functionalization while maintaining accessible the selected surface groups. Combining the electrochemically assisted deposition of ordered and oriented azide-functionalized mesoporous silica with alkyne-azide click chemistry enables such nanostructured and vertically aligned hybrid films to be obtained with significant amounts of active organic functional groups, as illustrated for ferrocene and pyridine functions. A good level of mesostructural order was obtained, namely up to 40% of organosilane in the starting sol. The method could be applied to a wide variety of functional groups, thus offering numerous new opportunities for applications in various fields.

11.
Materials (Basel) ; 17(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930169

RESUMO

This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young's modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10-8 g2 cm-4 h-1 to 6.06 × 10-9 g2 cm-4 h-1. The activation energy increases from 90.8 kJ·mol-1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol-1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature.

12.
Nanoscale ; 16(5): 2289-2294, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164662

RESUMO

Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.

13.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120587

RESUMO

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

14.
RSC Adv ; 12(34): 21940-21945, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043076

RESUMO

A joint experimental and theoretical study is presented to reveal the influence of nitrogen doping on the optical and electrical properties of NiO thin films. Nitrogen addition can significantly enhance the subgap absorption. The molecular state of nitrogen (N2) has been identified in these doped thin films by electron energy loss spectroscopy.

15.
Nanoscale Adv ; 4(21): 4658-4668, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341296

RESUMO

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 µA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.

16.
Nature ; 437(7062): 1121-4, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16237436

RESUMO

The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars. Abiogenic carbonates are considered as indicators of aqueous mineral alteration in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae and protostars devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial. The main dust component observed in circumstellar envelopes is amorphous silicates, which are thought to have formed by non-equilibrium condensation. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33539292

RESUMO

Batteryless, wireless, and packageless acoustic wave sensors are particularly desirable for harsh high-temperature environments. In this letter, an acoustic wave sensor based on a lithium niobate (Y + 128° cut, abbreviated LN-Y128) substrate with a buried platinum interdigital transducer (IDT) in an aluminum nitride (AlN) overlayer is investigated. Previously, it was demonstrated theoretically that due to the specific properties of LN-Y128, Rayleigh-type guided waves can propagate at the AlN/IDT(Pt)/LN-Y128 interface. Here, this structure is, for the first time, studied experimentally, including the growth and properties of the AlN layer onto irregular platinum IDTs. Both Shear Horizontal and Rayleigh-type waves have been identified after the AlN deposition and the velocities are consistent with the fitted SDA-FEM-SDA (a combination of finite element modeling with spectral domain analysis) simulations. Electrical measurements with a surface perturbation and temperature measurements show that the AlN/IDT(Pt)/LN-Y128 bilayer structure is promising as a packageless high-temperature sensor.

18.
ACS Appl Mater Interfaces ; 13(26): 30874-30884, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157227

RESUMO

This study reports a strong ME effect in thin-film composites consisting of nickel, iron, or cobalt foils and 550 nm thick AlN films grown by PE-ALD at a (low) temperature of 250 °C and ensuring isotropic and highly conformal coating profiles. The AlN film quality and the interface between the film and the foils are meticulously investigated by means of high-resolution transmission electron microscopy and the adhesion test. An interface (transition) layer of partially amorphous AlxOy/AlOxNy with thicknesses of 10 and 20 nm, corresponding to the films grown on Ni, Fe, and Co foils, is revealed. The AlN film is found to be composed of a mixture of amorphous and nanocrystalline grains at the interface. However, its crystallinity is improved as the film grew and shows a highly preferred (002) orientation. High self-biased ME coefficients (αME at a zero-bias magnetic field) of 3.3, 2.7, and 3.1 V·cm-1·Oe-1 are achieved at an off-resonance frequency of 46 Hz in AlN/Ni thin-film composites with different Ni foil thicknesses of 7.5, 15, and 30 µm, respectively. In addition, magnetoelectric measurements have also been carried out in composites made of 550 nm thick films grown on 12.5 µm thick Fe and 15 µm thick Co foils. The maximum magnetoelectric coefficients of AlN/Fe and AlN/Co composites are 0.32 and 0.12 V·cm-1·Oe-1, measured at 46 Hz at a bias magnetic field (Hdc) of 6 and 200 Oe, respectively. The difference of magnetoelectric transducing responses of each composite is discussed according to interface analysis. We report a maximum delivered power density of 75 nW/cm3 for the AlN/Ni composite with a load resistance of 200 kΩ to address potential energy harvesting and electromagnetic sensor applications.

19.
Adv Mater ; 33(12): e2007047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604960

RESUMO

Spintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high-performance spintronics operations. Very strong current-induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These "self-torques" are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert "self-torques" on single magnetic layers as well as to generate spin currents from a magnetic layer.

20.
Inorg Chem ; 49(23): 10940-8, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21049903

RESUMO

Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.


Assuntos
Substâncias Luminescentes/química , Manganês/química , Nanotecnologia/métodos , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Coloides/química , Temperatura Alta , Substâncias Luminescentes/síntese química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA