Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phytother Res ; 38(5): 2165-2181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396341

RESUMO

Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-ß/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.


Assuntos
Antioxidantes , Curcuma , Curcumina , Etanol , Extratos Vegetais , Curcuma/química , Curcumina/farmacologia , Humanos , Extratos Vegetais/farmacologia , Etanol/química , Animais , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
2.
Phytother Res ; 38(6): 3037-3059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595123

RESUMO

Insomnia affects millions of people worldwide, prompting considerable interest in herbal remedies for its treatment. This review aims to assess the therapeutic potential of such remedies for insomnia by analyzing current scientific evidence. The analysis identified several herbs, including Rosmarinus officinalis, Crocus sativus, Rosa damascena, Curcuma longa, Valeriana officinalis, Lactuca sativa, Portulaca oleracea, Citrus aurantium, Lippia citriodora, and Melissa officinalis, which show promise in improving overall sleep time, reducing sleep latency, and enhancing sleep quality. These plants act on the central nervous system, particularly the serotonergic and gamma-aminobutyric acid (GABA)ergic systems, promoting sedation and relaxation. However, further research is necessary to fully understand their mechanisms of action, optimal dosages, and treatment protocols. Combining herbal medicines with conventional treatments may offer an effective natural alternative for those seeking medication. Nevertheless, individuals should consult their healthcare provider before using herbal remedies for insomnia. While this review provides evidence supporting their use, additional high-quality studies are needed to firmly establish their clinical efficacy.


Assuntos
Hipnóticos e Sedativos , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Hipnóticos e Sedativos/uso terapêutico , Plantas Medicinais/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Melissa/química , Sono/efeitos dos fármacos
3.
Phytother Res ; 36(10): 3691-3708, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35841194

RESUMO

Cancer development entangles with mutation and selection for cells that progressively increase capacity for proliferation and metastasis at the cellular level. Surgery, chemotherapy, and radiotherapy are the standard treatments to manage several types of cancer. Chemotherapy is toxic for both normal and cancer cells and can induce unfavorable conditions, such as chemotherapy-induced nausea and vomiting (CINV), that reduce patients' quality of life. Emesis after chemotherapy is categorized into two classes acute and delayed. Since ancient times, herbal medicines have been used in various cultures to manage stomachache, vomiting, and nausea. In this manuscript, the antiemetic mechanisms of several herbal medicines and their preparations such as Zingiber officinale (5-HT, NK-1 receptor and muscarinic antagonist activity), Mentha spicata (5-HT antagonist activity), Scutellaria baicalensis (antioxidant activity), Persumac (useful in delayed phase through antioxidant, anti-inflammatory, and anti-contractile properties) and Rikkunshito (supportive in acute and delayed phase through 5-HT receptor antagonist activity) have been reviewed to show their potential effects on decreasing CINV and attract scientists attention to formulate more herbal medicine to alleviate CINV in cancer patients. However, it is crucial to say that additional high-quality investigations are required to firmly verify the clinical effectiveness and safety of each plant/compound.


Assuntos
Antieméticos , Antineoplásicos , Neoplasias , Plantas Medicinais , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Antineoplásicos/efeitos adversos , Antioxidantes/uso terapêutico , Humanos , Antagonistas Muscarínicos , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Neoplasias/tratamento farmacológico , Qualidade de Vida , Receptores da Neurocinina-1/uso terapêutico , Receptores de Serotonina , Serotonina , Antagonistas da Serotonina/uso terapêutico , Vômito/induzido quimicamente , Vômito/tratamento farmacológico
4.
Phytother Res ; 36(6): 2300-2323, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35234312

RESUMO

Metabolic syndrome (MetS) is a multifactorial disease with medical conditions such as hypertension, diabetes, obesity, dyslipidemia, and insulin resistance. Alpha-lipoic acid (α-LA) possesses various pharmacological effects, including antidiabetic, antiobesity, hypotensive, and hypolipidemia actions. It exhibits reactive oxygen species scavenger properties against oxidation and age-related inflammation and refines MetS components. Also, α-LA activates the 5' adenosine monophosphate-activated protein kinase and inhibits the NFκb. It can decrease cholesterol biosynthesis, fatty acid ß-oxidation, and vascular stiffness. α-LA decreases lipogenesis, cholesterol biosynthesis, low-density lipoprotein and very low-density lipoprotein levels, and atherosclerosis. Moreover, α-LA increases insulin secretion, glucose transport, and insulin sensitivity. These changes occur via PI3K/Akt activation. On the other hand, α-LA treats central obesity by increasing adiponectin levels and mitochondrial biogenesis and can reduce food intake mainly by SIRT1 stimulation. In this review, the most relevant articles have been discussed to determine the effects of α-LA on different components of MetS with a special focus on different molecular mechanisms behind these effects. This review exhibits the potential properties of α-LA in managing MetS; however, high-quality studies are needed to confirm the clinical efficacy of α-LA.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Ácido Tióctico , Proteínas Quinases Ativadas por AMP/metabolismo , Colesterol , Humanos , Lipoproteínas LDL , Síndrome Metabólica/tratamento farmacológico , Obesidade , Fosfatidilinositol 3-Quinases , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico
5.
Phytother Res ; 36(1): 506-524, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34962009

RESUMO

The main adverse effect of doxorubicin is cardiotoxicity. Oxidative stress and apoptosis induction have been suggested as mechanisms involved in its cardiotoxicity. In this study, cardioprotective effects of alpha-mangostin against doxorubicin-induced cardiotoxicity have been investigated in rats. Forty-two rats were divided as follows: Control, doxorubicin (2 mg/kg every 48 hr), alpha-mangostin (200 mg/kg), alpha-mangostin (50, 100, 200 mg/kg) + doxorubicin (2 mg/kg every 48 hr), and vitamin E (200 IU/kg) + doxorubicin (2 mg/kg every 48 hr). Alpha-mangostin was administered by gavage for 19 days, while doxorubicin (12 days) and vitamin E (19 days) were injected intraperitoneally. Doxorubicin decreased heart rate, increased electrocardiogram signal components duration and reduced systolic and diastolic arterial blood pressure, and caused histological damage in the heart of rats. Doxorubicin decreased heart weight and heart/body weight ratio, as well as elevated creatine phosphokinase isoenzyme and lactate dehydrogenase. Doxorubicin increased malondialdehyde, inflammatory biomarkers, and caspases 3 and 9 and decreased reduced glutathione content in heart tissue but co-administration of alpha-mangostin (100 mg/kg) restored all doxorubicin toxic effects. Results show that alpha-mangostin has protective effects against doxorubicin-induced cardiotoxicity by antioxidant, antiinflammatory, and antiapoptotic effects that may ameliorate doxorubicin cardiotoxicity in human chemotherapy without reduction in its anticancer effect.


Assuntos
Cardiotoxicidade , Xantonas , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Miocárdio , Ratos , Xantonas/farmacologia
6.
Drug Chem Toxicol ; 45(4): 1528-1535, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33213219

RESUMO

Acrylamide (ACR), one of the most toxic chemical agents in humans and animals has several uses in different industries. Carnosic acid is an important biological antioxidant extracted from rosemary. In this study, the protective effect of carnosic acid on ACR-induced neurotoxicity in rat and PC12 cells has been investigated. Male Wistar rats were randomly divided into eight groups including (1) control group, (2) ACR (50 mg/kg, i.p.), (3-6) ACR plus carnosic acid (5, 10, 20, and 40 mg/kg, i.p.), (7) ACR plus vitamin E (200 mg/kg i.p., every other day), and (8) carnosic acid (40 mg/kg i.p.). After 11 days, behavioral tests were evaluated. Malondialdehyde (MDA), glutathione (GSH) and Bax, Bcl-2, and caspase 3 protein levels in brain tissue were measured. In in vitro study, the protective effects of carnosic acid on ACR toxicity were assessed by MTT assay. ACR caused severe motor impairment compared to control, increased MDA, and decreased GSH level. ACR increased Bax/Bcl-2 ratio and cleaved caspase-3. Carnosic acid (40 mg/kg) significantly recovered locomotor disorders. Additionally, carnosic acid increased GSH content, reduced MDA, and decreased Bax/Bcl-2 ratio, and caspase 3 protein levels. Carnosic acid increased cell viability compared to ACR at concentrations of 2.5-10 µM. Carnosic acid is the most abundant antioxidant compound found in the rosemary leaves. Recently, natural compounds have been suggested as potential treatment interventions for various diseases through their antioxidant properties. In this study, carnosic acid reduced ACR-induced toxicity through inhibition of oxidative stress and apoptosis.


Assuntos
Abietanos , Acrilamida , Neurotoxinas , Abietanos/farmacologia , Acrilamida/toxicidade , Animais , Antioxidantes/metabolismo , Caspase 3/metabolismo , Glutationa/metabolismo , Masculino , Neurotoxinas/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar , Proteína X Associada a bcl-2/metabolismo
7.
Phytother Res ; 35(12): 6489-6513, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34312922

RESUMO

Turmeric (Curcuma longa) and its constituent, curcumin, have been used for their therapeutic properties for a long time. Most of the medicinal impacts of turmeric and curcumin might be attributed to their anti-inflammatory, antinociceptive, and antioxidant effects. In the present review, the preventive and therapeutic potentials of turmeric and its active constituent, curcumin, on inflammatory disorders and pain as well as patents related to their analgesic and anti-inflammatory effects, have been summarized to highlight their value on human health. A literature review was accomplished in Google Scholar, PubMed, Scopus, Google Patent, Patentscope, and US Patent. Several documents and patents disclosed the significance of turmeric and curcumin to apply in several therapeutic, medicinal, and pharmaceutical fields. These phytocompounds could be applied as a supplementary therapy in phytotherapy, inflammatory disorders such as arthritis, inflammatory bowel diseases, osteoarthritis, psoriasis, dermatitis, and different types of pain including neuropathic pain. However, because of inadequate clinical trials, further high-quality studies are needed to firmly establish the clinical efficacy of the plant. Consistent with the human tendency to the usage of phytocompounds rather than synthetic drugs, particular consideration must be dedicated to bond the worth of turmeric and curcumin from basic sciences to clinical applications.


Assuntos
Curcuma , Curcumina , Anti-Inflamatórios/uso terapêutico , Curcumina/uso terapêutico , Humanos , Dor/tratamento farmacológico , Fitoterapia
8.
Phytother Res ; 35(3): 1313-1328, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33044022

RESUMO

Natural and chemical toxic agents cause severe adverse effects on people's health in a variety of exposing ways. Herbal medications have taken into consideration as alternative safe treatments for toxicities. Rosmarinus officinalis also known as rosemary belongs to the Lamiaceae family. Rosemary and its constituents including carnosic acid, rosmarinic acid, and carnosol have a lot of benefits such as anti-inflammatory, antioxidant, anti-mutagenic, anti-bacterial, antiviral, antinociceptive, and neuroprotective activities. In this literate review, we focused on the protective effects of rosemary and its main compounds against natural and chemical toxicities in both in vitro and in vivo studies. The protective effects of rosemary and its components are mostly mediated through different mechanisms such as the inhibition of oxidative stress, reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways.


Assuntos
Extratos Vegetais/uso terapêutico , Rosmarinus/química , Humanos , Extratos Vegetais/farmacologia
9.
Phytother Res ; 35(4): 2005-2024, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33315269

RESUMO

The underlying mechanisms of bisphenol A (BPA)-induced metabolic disorder and the protective impact of Nigella sativa oil (NSO) and thymoquinone (TQ) against BPA-induced metabolic disorder were investigated. Rats were treated as follows: Control, BPA (10 mg/kg), TQ (2 mg/kg), NSO (84 µL/kg), BPA + TQ (0.5, 1, 2 mg/kg), and BPA + NSO (21, 42, 84 µL/kg). BPA was administered by gavage, while, TQ and NSO were injected intraperitoneally (daily, 54 days). The weight, blood pressure, serum parameters [glucose, lipid profile, hepatic enzymes, insulin, interlukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), leptin, adiponectin], malondialdehyde (MDA), glutathione (GSH) and insulin signaling pathways [insulin receptor substrate (p-IRS,IRS); kinase (p-Akt,Akt); glycogen synthase kinase (p-GS3K,GS3K)] were measured. BPA increased the blood pressure, MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, and leptin, and decreased the GSH and phosphorylated forms of IRS, Akt, GS3K but did not alter weight, glucose, IRS, AKT, and GS3K in the liver. Administration of NSO or TQ with BPA reduced the blood pressure, liver level of MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, leptin, and increased the liver level of GSH and p-IRS, p-AKT, p-GS3K. TQ and NSO are thought to be effective in controlling metabolic disorders induced by BPA.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Benzoquinonas/química , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/tratamento farmacológico , Nigella sativa/química , Fenóis/efeitos adversos , Animais , Humanos , Masculino , Projetos Piloto , Ratos , Ratos Wistar
10.
Phytother Res ; 34(12): 3211-3225, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32592535

RESUMO

Mangosteen fruit has been used for various disorders, including pain. The effects of alpha-mangostin, the main component of mangosteen, on the neuropathic pain caused by chronic constriction injury (CCI) were evaluated in rats. In treatment groups, alpha-mangostin (10, 50, 100 mg/kg/day, i.p.) was administered from Day 0, the day of surgery, for 14 days. The degree of heat hyperalgesia, cold, and mechanical allodynia was assessed on Days 0, 3, 5, 7, 10, and 14. The lumbar spinal cord levels of MDA, GSH, inflammatory markers (TLR-4, TNF-α, MMP2, COX2, IL-1ß, iNOS, and NO), apoptotic markers (Bcl-2, Bax, and caspase-3) were measured by western blot on Days 7 and 14. Rats in the CCI group showed thermal hyperalgesia, cold, and mechanical allodynia on Days 3-14. All concentrations of alpha-mangostin alleviated CCI-induced behavioral alterations. MDA level augmented and GSH level decreased in the CCI group and alpha-mangostin (50, 100 mg/kg) reversed the alterations. An enhancement in the levels of all inflammatory markers, Bax, and caspase-3 was shown on Days 7 and 14, which was controlled by alpha-mangostin (50 mg/kg). The detected antinociceptive effects of alpha-mangostin may be mediated through antioxidant, anti-inflammatory, and antiapoptotic properties.


Assuntos
Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Xantonas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Garcinia mangostana/química , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Neuralgia/patologia , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-39096378

RESUMO

BACKGROUND: Rosemary (Rosmarinus officinalis) contains alkaloids, phenolic acids, saponins, tannins, diterpenes, flavonoids, and essential oils and has antioxidant, anti-inflammatory, antibacterial, anticancer, neuroprotective, cardioprotective, and hepatoprotective effects. While rosemary is generally considered safe for consumption and topical application, allergic reactions and dermatitis have been reported in some individuals. This paper provides an in-depth review of the current studies on rosemary toxicity, shedding light on its potential adverse effects and underlying mechanisms. METHODS: Google Scholar, PubMed, Scopus, and Web of Science were used to perform extensive research from the inception of these databases until February 2024. RESULTS: The toxicological effects explored include affecting several organs such as the liver and kidney by causing atrophic and degenerative changes, increasing blood urea nitrogen (BUN), aspartate aminotransferase (AST), and reducing total serum protein levels. Rosemary may induce reproductive toxicity by decreasing spermatogenesis in the testes, testosterone, sperm density, and motility. It might also trigger genotoxicity and anomalies in fetuses by increasing cytoplasmic membrane shrinkage, the formation of apoptotic bodies, internucleosomal deoxyribonucleic acid (DNA) fragmentation, and DNA ladder formation. CONCLUSION: While rosemary is considered safe for food preservation, caution is warranted regarding chronic and high doses due to potential adverse effects on the kidneys, liver, reproductive system, and teratology. Additionally, it underscores the significance of considering drug interactions. The article also highlights the importance of considering toxicological data in realistic exposure situations and discusses the relevance of these findings for human health. Hence, further research is recommended to enhance our understanding of the toxicity profile associated with rosemary.

12.
Curr Nutr Rep ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354208

RESUMO

PURPOSE OF REVIEW: This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS: The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.

13.
MethodsX ; 12: 102782, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883591

RESUMO

This paper provides a complete protocol for studying the effects of inhaled paraquat (PQ), a toxic herbicide that has negative effects systemically and on the lungs. The protocol aims to evaluate the effects of aerosolized PQ exposure on lung and systemic injury in an animal model, which will provide significant information for therapeutic interventions for PQ-induced pulmonary and systemic damage. The protocol involves the following key components: 1. Study groups: By including control, non-treated aerosolized PQ-exposed, and treated PQ-exposed animals with various agent groups in the experiment, lung and systemic injury in each group could be evaluated, and different measured parameters could be compared among groups. 2. PQ exposure: Animals in the PQ-exposed groups are subjected to PQ aerosol inhalation, simulating occupational or accidental exposure in farmers working with this herbicide. 3. Assessment measures: To determine the degree of lung and systemic injury and its physiological effects, several assessments, such as biochemical markers, histopathological analysis, and functional tests, are used. The protocol offers reliable and accurate results by using standardized methods and data collection. The effect of PQ exposure on lung and systemic injury could be evaluated by statistical analysis of the collected data, which also makes it easier to identify possible protective agents or interventions. This comprehensive evaluation protocol provides an essential basis for studying the mechanisms behind PQ-induced lung and systemic injury and assessing the effectiveness of preventative or therapeutic strategies in minimizing its adverse effects.

14.
Iran J Basic Med Sci ; 27(3): 311-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333747

RESUMO

Objectives: Acrylamide (ACR) induces neurotoxicity in humans and animals through different mechanisms. Sitagliptin is a type-2 diabetes medication with neuroprotective properties. The effects of sitagliptin against neurotoxicity stimulated by ACR were examined. Materials and Methods: Male Wistar rats were classified as follows: 1. Control (normal saline, 11 days, IP), 2. ACR (50 mg/kg, 11 days, IP), 3. ACR (11 days, days 11-20 normal saline), 4-7. ACR+sitagliptin (5, 10, 20, and 40 mg/kg, 11 days, IP), 8. ACR+sitagliptin (10 mg/kg, days 6-11), 9. ACR+sitagliptin (10 mg/kg, days 6-20), 10. Sitagliptin (40 mg/kg, 11 days), 11. ACR+vitamin E (200 mg/kg, IP). Finally, the gait score was evaluated. Reduced glutathione (GSH) and malondialdehyde (MDA) levels were measured in cortex tissue. Also, IL-1ß, TNF-α, and caspase-3 levels were assessed in the cortex by western blotting. Results: ACR caused movement disorders, triggered oxidative stress, and raised TNF-α, IL-1ß, and caspase-3 cleaved levels. Supplementation of sitagliptin (10 mg/kg) along with ACR, in 3 protocols, reduced gait disorders compared to the ACR group. Receiving sitagliptin in all doses plus ACR and injection of sitagliptin (10 mg/kg) from days 6 to11 reduced the MDA level of cortex tissue. Sitagliptin (all doses) plus ACR increased the GSH level of the cortex tissue. Sitagliptin (10 mg/kg) with ACR dropped the amounts of TNF-α and caspase-3 cleaved proteins in cortex tissue but did not affect the IL-1ß level. Conclusion: Sitagliptin disclosed preventive and therapeutic effects on ACR neurotoxicity. Sitagliptin possesses antioxidant, anti-inflammatory, and anti-apoptotic properties and inhibits CR neurotoxicity in rats.

15.
Phytomedicine ; 126: 155352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342017

RESUMO

BACKGROUND: One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE: Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS: Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS: G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/ß-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS: G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.


Assuntos
Antioxidantes , Ginkgo biloba , Ginkgo biloba/química , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Anti-Inflamatórios/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-39367985

RESUMO

Acrylamide (ACR) is a toxic agent for humans and animals. Gentisic acid, an aspirin metabolite, has antioxidant activity. Therefore, the present study investigated the probable protective effects of aspirin and gentisic acid on ACR-induced neurotoxicity in PC12 cells and rats. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the effects of aspirin and gentisic acid (1.25, 2.5, 5 µM) on ACR (5 mM) toxicity. Male Wistar rats were randomly divided into 13 groups: (1) Control group, (2) ACR (50 mg/kg, 11 days, i.p.), (3-5) ACR + aspirin (25, 50, 75 mg/kg, 11 days, p.o.), (6-8) ACR + gentisic acid (25, 50, 75 mg/kg, 11 days, p.o.), (9) ACR + vitamin E (200 mg/kg, every other day, i.p.), (10, 11) Aspirin (75, 100 mg/kg, 11 days, p.o.), (12, 13) Gentisic acid (75, 100 mg/kg, 11 days, p.o.). Behavioral tests were assessed on the final day of the study. In the cerebral cortex, malondialdehyde (MDA), glutathione (GSH), cleaved-caspase-3, and microtubule-associated protein 1A/1B-light chain 3 (LC3) protein levels were evaluated. When compared with the ACR group, aspirin (2.5, 5 µM) and gentisic acid (2.5 µM) significantly enhanced cell viability. In comparison to the control group, ACR induced severe motor impairment, elevated MDA, cleaved-caspase-3, LC3 II/I ratio, and decreased GSH levels in the cerebral cortex of rats. ACR-induced changes were significantly reversed by aspirin and gentisic acid (25 mg/kg). Oxidative stress, apoptosis, and autophagy play important roles in the neurotoxicity of ACR. Aspirin and gentisic acid significantly reduced ACR-induced toxicity by inhibiting the mentioned mechanisms.

17.
Iran J Basic Med Sci ; 27(2): 151-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234661

RESUMO

Objectives: Colistin is used to treat multidrug-resistant gram-negative bacterial infections. It increases the membrane permeability of kidney cells, leading to kidney toxicity. Crocin, a carotenoid found in saffron, has anti-oxidant and nephroprotective properties. The present study aimed to explore the potential renoprotective effects of crocin against colistin-induced nephrotoxicity. Materials and Methods: Six groups of male Wistar rats were utilized: 1- Control (0.5 ml of normal saline, 10 days, IP); 2- Crocin (40 mg/kg, 10 days, IP); 3-Colistin (23 mg/kg, 7 days, IP); 4-6 Colistin (23 mg/kg, 7 days, IP)+ crocin (10, 20, 40 mg/kg, 10 days, IP). On day 11, rats were sacrificed and their blood and kidney samples were collected to measure creatinine, blood urea nitrogen (BUN), glutathione (GSH) levels, malondialdehyde (MDA), and histopathological alterations. Results: Colistin caused a significant increase in BUN, creatinine, and MDA, and a decrease in GSH compared to the control group. It also led to congested blood vessels, glomerular shrinkage, and medullary tubular degeneration. Co-administration of crocin with colistin resulted in a significant decrease in BUN and creatinine, increased GSH levels, and ameliorated the histopathological alterations compared to the colistin group. No significant difference was found between the control group and the crocin (40 mg/kg) group. Conclusion: It might be suggested that colistin can induce kidney damage by inducing oxidative stress. However, crocin shows protective effects against colistin-induced renal injury by acting as an anti-oxidant. Hence, crocin can be used as a supplement to reduce tissue and biochemical damage caused by colistin injection.

18.
Neurotoxicology ; 100: 47-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043637

RESUMO

BACKGROUND: Acrylamide (ACR) can induce neurotoxicity through different pathways, including oxidative stress and apoptosis. Azithromycin is well-known for its antioxidant and anti-apoptotic properties. OBJECTIVE: To evaluate the potential neuroprotective effect of azithromycin in an in vivo model of ACR-induced neurotoxicity, by investigating its impact on oxidative stress and apoptosis pathways. METHODS: Male rats were divided into eleven groups at random (n = 6). 1:control (vehicle), 2:ACR (50 mg/kg, 11 days, I.P.), 3-7:ACR+ azithromycin (3.1, 6.25, 12.5, 25, 50 mg/kg, 11 days, I.P.), 8-9:ACR+ azithromycin (3.1, 6.25 mg/kg, from day 3-11), 10: ACR+ vitamin E (200 mg/kg, every other day, I.P.), 11. Azithromycin (50 mg/kg). Following the treatment period, a gait score examination was performed, and malondialdehyde (MDA), glutathione (GSH), Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and caspase-3 levels in the cerebral cortex were measured. RESULTS: Gait abnormality, a drop in GSH, and an increase in lipid peroxidation, Bax/Bcl-2 ratio, and caspase-3 levels were all significantly triggered by ACR in the cerebral cortex versus the control group. Azithromycin 3.1 and 6.25 mg/kg with ACR and azithromycin 6.25 mg/kg with ACR from day 3-11 ameliorated movement disorders caused by ACR. Azithromycin in all doses and both protocols along with ACR decreased the MDA level. Azithromycin (3.1, 6.25 mg/kg) along with ACR in both protocols increased the level of GSH, reduced the Bax/Bcl-2 ratio and caspase-3 amounts in the brain tissue versus the ACR group. CONCLUSIONS: Administration of azithromycin had both preventive and therapeutic effects on ACR-induced neurotoxicity through its antioxidant and antiapoptotic properties.


Assuntos
Antioxidantes , Azitromicina , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Caspase 3/metabolismo , Azitromicina/uso terapêutico , Azitromicina/farmacologia , Proteína X Associada a bcl-2/metabolismo , Acrilamida/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Apoptose
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 6001-6015, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38381146

RESUMO

PURPOSE: The most important problem with acetaminophen is its hepatotoxicity. N-acetylcysteine (NAC) is used to treat the hepatotoxicity of acetaminophen. Due to the structural similarities of this compound with amifostine, we decided to test the effect of this substance and its metabolite, WR-1065, on the hepatotoxicity of acetaminophen. METHODS: The single-dose method contained 1. Control; 2. Acetaminophen (1 g/kg, gavage); 3-5. Acetaminophen + amifostine (100, 200, 400 mg/kg, i.p.); 6-8. Acetaminophen + WR-1065 (50, 100, 200 mg/kg, i.p.); and 9. Acetaminophen + NAC (100, 200 mg/kg, i.p.). The multiple-dose method included the same groups: amifostine (50, 100, 200 mg/kg), WR-1065 (25, 50, 100 mg/kg), and NAC (100 mg/kg). Then, animals were sacrificed, and blood samples were collected for measuring ALT, AST, ALP, and T-Bil, liver tissue for histopathological examination, MDA, and GSH amounts. RESULTS: Acetaminophen increased the levels of MDA, T-Bil, ALT, AST, and ALP, decreased GSH levels, and augmented necrosis, neutrophils, lymphocytes, and macrophages in the port space in single-dose and multiple-dose studies. Amifostine and WR-1065 significantly reduced the levels of MDA, T-Bil, ALT, AST, ALP, increased GSH content, and ameliorated histopathological alterations in a single-dose and multiple-dose method compared to the acetaminophen group. Moreover, NAC caused a significant decrease in the levels of MDA, T-Bil, ALT, AST, and ALP, and reduced GSH amounts in single-dose and multiple-dose studies. CONCLUSION: Amifostine and WR-1065 as antioxidant and hepatoprotective compounds are effective in reducing acetaminophen-induced hepatotoxicity with a similar effect to NAC and can be administered as an adjunct in the treatment of acetaminophen overdose.


Assuntos
Acetaminofen , Amifostina , Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos Wistar , Animais , Acetaminofen/toxicidade , Amifostina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mercaptoetilaminas/farmacologia , Acetilcisteína/farmacologia , Ratos , Antioxidantes/farmacologia , Analgésicos não Narcóticos/toxicidade , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico
20.
Artigo em Inglês | MEDLINE | ID: mdl-38995374

RESUMO

Colistin, a multidrug-resistant gram-negative bacterial infection medication, has been associated with renal impairment and failure. Trans-sodium crocetinate (TSC), a saffron-derived chemical recognized for its antioxidant and nephroprotective properties, was studied in this study to determine its potential to alleviate the nephrotoxic effects of colistin. Forty-two male Wistar rats were randomly classified into seven groups (n = 6): (1) control (normal saline, 12 days, i.p.), (2) colistin (22 mg/kg, 7 days, i.p.), (3-5) colistin + TSC (25, 50, and 100 mg/kg, 12 days, i.p., starting from 5 days before colistin), (6) TSC (100 mg/kg, 12 days, i.p.), (7) colistin + vitamin E (100 IU/kg, 12 days, i.p). On day 13, the rats were euthanized and the serum content of creatinine, BUN, Na+, and K+, as well as oxidative stress (GSH, MDA, SOD, CAT), inflammatory (IL-1ß), apoptotic (Bax, Bcl-2, caspase-3, 8, 9), and autophagy (Beclin-1, LC3) markers, NGAL, and histopathological changes in the kidney were measured. Colistin significantly increased serum creatinine, BUN, MDA, IL-1ß, caspase-3,8,9, Bax, Beclin-1, LC3, and NGAL levels in kidney tissue. It also caused inflammation, focal necrosis of tubular epithelial cells, protein cast, and acute tubular necrosis. Furthermore, colistin decreased SOD, CAT, GSH, and Bcl-2 levels. TSC and vitamin E administration along with colistin restored most of the alterations induced by colistin. Overall, it could be concluded that colistin induces oxidative stress, inflammation, autophagy, and apoptosis, which can cause kidney injury. However, TSC can also be used as a therapeutic agent to reduce injuries caused by colistin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA