Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nonlinear Dyn ; 106(2): 1453-1475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025034

RESUMO

Nowadays, humanity is facing one of the most dangerous pandemics known as COVID-19. Due to its high inter-person contagiousness, COVID-19 is rapidly spreading across the world. Positive patients are often suffering from different symptoms that can vary from mild to severe including cough, fever, sore throat, and body aches. In more dire cases, infected patients can experience severe symptoms that can cause breathing difficulties which lead to stern organ failure and die. The medical corps all over the world are overloaded because of the exponentially myriad number of contagions. Therefore, screening for the disease becomes overwrought with the limited tools of test. Additionally, test results may take a long time to acquire, leaving behind a higher potential for the prevalence of the virus among other individuals by the patients. To reduce the chances of infection, we suggest a prediction model that distinguishes the infected COVID-19 cases based on clinical symptoms and features. This model can be helpful for citizens to catch their infection without the need for visiting the hospital. Also, it helps the medical staff in triaging patients in case of a deficiency of medical amenities. In this paper, we use the non-dominated sorting genetic algorithm (NSGA-II) to select the interesting features by finding the best trade-offs between two conflicting objectives: minimizing the number of features and maximizing the weights of selected features. Then, a classification phase is conducted using an AdaBoost classifier. The proposed model is evaluated using two different datasets. To maximize results, we performed a natural selection of hyper-parameters of the classifier using the genetic algorithm. The obtained results prove the efficiency of NSGA-II as a feature selection algorithm combined with AdaBoost classifier. It exhibits higher classification results that outperformed the existing methods.

2.
Comput Intell ; 38(2): 416-437, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35601364

RESUMO

Individuals' flow's fluidifcation in the same way as the thinning of the population's concentration remains among major concerns within the context of the pandemic crisis situations. The recent COVID-19 pandemic crisis is a typical example of the aforementioned where on despite of the containment phases that radically isolate the population but are not applicable persistently, people have to adapt their behavior to new daily-life situations tempering Individuals' stream, avoiding tides, and watering down population's concentration. Crowd evacuation is one of the well-known research domains that can play a pertinent role to face the challenge of the COVID-19 pandemic. In fact, considering the population's concentration thinning within the slant of the "crowd evacuation" paradigm allows managing the flow of the population, and consequently, decreasing the probable number of infected cases. In other words, crowd evacuation modeling and simulation with the aim of better-exploiting individuals' flow allow the study and analysis of different possible outcomes for designing population's concentration thinning strategies. In this article, a new decision-making approach is proposed in order to cope with the aforesaid challenges, which relies on an independent Deep Q Network with an improved SIR model (IDQN-I-SIR). The machine-learning component (i.e., IDQN) is in charge of the agent's movements control and I-SIR (improved "susceptible-infected-recovered" individuals) model is responsible to control the virus spread. We demonstrate the effectiveness of IDQN-I-SIR through a case-study of individuals' flow's management with infected cases' avoidance in an emergency department (often overcrowded in context of a pandemic crisis).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA