Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(10): 101001, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962014

RESUMO

Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^{2} mass dark matter. We present new constraints for sub-GeV/c^{2} dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12 306±184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^{2}. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^{2}.

2.
Phys Rev Lett ; 130(10): 101002, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962032

RESUMO

We present a search for dark matter particles with sub-GeV/c^{2} masses whose interactions have final state electrons using the DarkSide-50 experiment's (12 306±184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σ[over ¯]_{e}, the axioelectric coupling constant g_{Ae}, and the dark photon kinetic mixing parameter κ. We also set the first dark matter direct-detection constraints on the mixing angle |U_{e4}|^{2} for keV/c^{2} sterile neutrinos.

3.
Phys Rev Lett ; 129(25): 252701, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608219

RESUMO

We present an improved measurement of the carbon-nitrogen-oxygen (CNO) solar neutrino interaction rate at Earth obtained with the complete Borexino Phase-III dataset. The measured rate, R_{CNO}=6.7_{-0.8}^{+2.0} counts/(day×100 tonnes), allows us to exclude the absence of the CNO signal with about 7σ C.L. The correspondent CNO neutrino flux is 6.6_{-0.9}^{+2.0}×10^{8} cm^{-2} s^{-1}, taking into account the neutrino flavor conversion. We use the new CNO measurement to evaluate the C and N abundances in the Sun with respect to the H abundance for the first time with solar neutrinos. Our result of N_{CN}=(5.78_{-1.00}^{+1.86})×10^{-4} displays a ∼2σ tension with the "low-metallicity" spectroscopic photospheric measurements. Furthermore, our result used together with the ^{7}Be and ^{8}B solar neutrino fluxes, also measured by Borexino, permits us to disfavor at 3.1σ C.L. the "low-metallicity" standard solar model B16-AGSS09met as an alternative to the "high-metallicity" standard solar model B16-GS98.

4.
Phys Rev Lett ; 128(9): 091803, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302807

RESUMO

We report the measurement of sub-MeV solar neutrinos through the use of their associated Cherenkov radiation, performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The measurement is achieved using a novel technique that correlates individual photon hits of events to the known position of the Sun. In an energy window between 0.54 to 0.74 MeV, selected using the dominant scintillation light, we have measured 10 887_{-2103}^{+2386}(stat)±947(syst) (68% confidence interval) solar neutrinos out of 19 904 total events. This corresponds to a ^{7}Be neutrino interaction rate of 51.6_{-12.5}^{+13.9} counts/(day·100 ton), which is in agreement with the standard solar model predictions and the previous spectroscopic results of Borexino. The no-neutrino hypothesis can be excluded with >5σ confidence level. For the first time, we have demonstrated the possibility of utilizing the directional Cherenkov information for sub-MeV solar neutrinos, in a large-scale, high light yield liquid scintillator detector. This measurement provides an experimental proof of principle for future hybrid event reconstruction using both Cherenkov and scintillation signatures simultaneously.

5.
Phys Rev Lett ; 115(23): 231802, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684111

RESUMO

Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single monoenergetic photon was obtained. This new bound, τ≥6.6×10^{28} yr at 90% C.L., is 2 orders of magnitude better than the previous limit.

6.
Phys Rev Lett ; 108(5): 051302, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400925

RESUMO

We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6{stat}±0.3{syst} counts/(day·100 ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9 counts/(day·100 ton) (95% C.L.). The absence of the solar neutrino signal is disfavored at 99.97% C.L., while the absence of the pep signal is disfavored at 98% C.L. The necessary sensitivity was achieved by adopting data analysis techniques for the rejection of cosmogenic {11}C, the dominant background in the 1-2 MeV region. Assuming the Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×10{8} cm{-2} s^{-1} and <7.7×10{8} cm{-2} s{-1} (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.

7.
Phys Rev Lett ; 107(14): 141302, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107184

RESUMO

The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100 ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9) cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10) cm(-2) s(-1) and Φ(CNO)<1.3×10(9) cm(-2) s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

8.
J Environ Radioact ; 138: 444-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24725806

RESUMO

The decays of (214)Po into (210)Pb and of (212)Po into (208)Pb tagged by the previous decays from (214)Bi and (212)Bi have been studied inserting quartz vials inside the Counting Test Facility (CTF) at the underground laboratory in Gran Sasso (LNGS). We find that the mean lifetime of (214)Po is (236.00 ± 0.42(stat) ± 0.15(syst)) µs and that of (212)Po is (425.1 ± 0.9(stat) ± 1.2(syst)) ns. Our results are compatible with previous measurements, have a much better signal to background ratio, and reduce the overall uncertainties.


Assuntos
Radioisótopos de Chumbo/análise , Polônio/análise , Poluentes Radioativos/análise , Partículas alfa , Meia-Vida , Laboratórios , Monitoramento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA