Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Environ Res ; 235: 116487, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419196

RESUMO

Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.


Assuntos
Disruptores Endócrinos , Fluorocarbonos , Infertilidade , Humanos , Feminino , Gravidez , Epigênese Genética , Placenta , Fertilidade , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Fluorocarbonos/toxicidade , Disruptores Endócrinos/toxicidade
2.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834465

RESUMO

The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences.


Assuntos
Disruptores Endócrinos , Fluorocarbonos , Células-Tronco Mesenquimais , Recém-Nascido , Gravidez , Humanos , Feminino , Placenta/metabolismo , Epigênese Genética , Líquido Amniótico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Disruptores Endócrinos/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo
3.
BMC Oral Health ; 23(1): 425, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370064

RESUMO

BACKGROUND: Dental implant is the principal treatment for edentulism and the healthiness of the peri-implant tissue has a pivotal role for its longterm success. In addition, it has been shown that also the topography of the healing abutment can influence the outcome of the restoration. The objective of this human clinical trial was to assess the impact of a novel laser-treated healing abutment on peri-implant connective tissue and extracellular matrix proteins compared to the conventional machined surface, which served as the control group. METHODS: During second surgical stage a customized healing abutment were inserted on 30 single dental implants. Healing abutments were realized with two alternated different surface (two side laser-treated surfaces and two side machined surfaces) in order to be considered both as test and control on the same implant and reduce positioning bias. Following the soft tissue healing period (30 ± 7 days) a 5 mm circular biopsy was retrieved. Immuno-histochemical and quantitative real-time PCR (qPCR) analyses were performed on Collagen, Tenascin C, Fibrillin I, Metalloproteinases (MMPs) and their inhibitor (TIMPs). 15 were processed for qPCR, while the other 15 were processed for immunohistochemical analysis. Paired t-test between the two groups were performed. A value of p < 0.05 was considered statistically significant. RESULTS: Results revealed that the connective tissue facing the laser-treated surface expressed statistically significant lower amount of MMPs (p < 0.05) and higher level of TIMPs 3 (p < 0.05), compared to the tissue surrounding the machined implant, which, in turn expressed also altered level of extracellular matrix protein (Tenascin C, Fibrillin I (p < 0.05)) and Collagen V, that are known to be altered also in peri-implantitis. CONCLUSIONS: In conclusion, the laser-treated surface holds promise in positively influencing wound healing of peri-implant connective tissue. Results demonstrated that topographic nature of the healing abutments can positively influence mucosal wound healing and molecular expression. Previous studies have been demonstrated how laser treatment can rightly influence integrity and functionality of the gingiva epithelium and cell adhesion. Regarding connective tissue different molecular expression demonstrated a different inflammatory pattern between laser treated or machined surfaces where laser treated showed better response. Targeted interventions and preventive measures on peri- implant topography could effectively minimize the risk of peri-implant diseases contributing to the long-term success and durability of restoration. However, new studies are mandatory to better understand this phenomenon and the role of this surface in the peri-implantitis process.  TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov Identifier: (Registration Number: NCT05754970 ). Registered 06/03/2023, retrospectively registered.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Implantes Dentários/efeitos adversos , Tenascina , Colágeno , Tecido Conjuntivo , Lasers , Fibrilinas , Metaloproteinases da Matriz , Titânio
4.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435429

RESUMO

The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.


Assuntos
Cardiopatias/patologia , Mitocôndrias Cardíacas/patologia , Animais , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Metabolismo Energético , Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia
5.
Eur J Appl Physiol ; 120(10): 2233-2245, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32728820

RESUMO

PURPOSE: Vascular dysfunction has been demonstrated in patients with Alzheimer's disease (AD). Exercise is known to positively affect vascular function. Thus, the aim of our study was to investigate exercise-induced effects on vascular function in AD. METHODS: Thirty-nine patients with AD (79 ± 8 years) were recruited and randomly assigned to exercise training (EX, n = 20) or control group (CTRL, n = 19). All subjects performed 72 treatment sessions (90 min, 3 t/w). EX included moderate-high-intensity aerobic and strength training. CTRL included cognitive stimuli (visual, verbal, auditive). Before and after the 6-month treatment, the vascular function was measured by passive-leg movement test (PLM, calculating the variation in blood flow: ∆peak; and area under the curve: AUC) tests, and flow-mediated dilation (FMD, %). A blood sample was analyzed for vascular endothelial growth factor (VEGF). Arterial blood flow (BF) and shear rate (SR) were measured during EX and CTRL during a typical treatment session. RESULTS: EX group has increased FMD% (+ 3.725%, p < 0.001), PLM ∆peak (+ 99.056 ml/min, p = 0.004), AUC (+ 37.359AU, p = 0.037) and VEGF (+ 8.825 pg/ml, p = 0.004). In the CTRL group, no difference between pre- and post-treatment was found for any variable. Increase in BF and SR was demonstrated during EX (BF + 123%, p < 0.05; SR + 134%, p < 0.05), but not during CTRL treatment. CONCLUSION: Exercise training improves peripheral vascular function in AD. These ameliorations may be due to the repetitive increase in SR during exercise which triggers NO and VEGF upregulation. This approach might be included in standard AD clinical practice as an effective strategy to treat vascular dysfunction in this population.


Assuntos
Doença de Alzheimer/terapia , Terapia por Exercício/métodos , Hemodinâmica , Fator A de Crescimento do Endotélio Vascular/sangue , Estimulação Acústica/métodos , Idoso , Idoso de 80 Anos ou mais , Cognição , Feminino , Humanos , Masculino , Movimento , Estimulação Luminosa/métodos
6.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916865

RESUMO

Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Mesenquimais/fisiologia , Linhagem da Célula , Humanos , Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel
7.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878275

RESUMO

Cell therapy with a variety of stem populations is increasingly being investigated as a promising regenerative strategy for cardiovascular (CV) diseases. Their combination with adequate scaffolds represents an improved therapeutic approach. Recently, several biomaterials were investigated as scaffolds for CV tissue repair, with decellularized extracellular matrices (dECMs) arousing increasing interest for cardiac tissue engineering applications. The aim of this study was to analyze whether dECMs support the cardiac differentiation of CardiopoieticAF stem cells. These perinatal stem cells, which can be easily isolated without ethical or safety limitations, display a high cardiac differentiative potential. Differentiation was previously achieved by culturing them on Matrigel, but this 3D scaffold is not transplantable. The identification of a new transplantable scaffold able to support CardiopoieticAF stem cell cardiac differentiation is pivotal prior to encouraging translation of in vitro studies in animal model preclinical investigations. Our data demonstrated that decellularized extracellular matrices already used in cardiac surgery (the porcine CorTMPATCH and the equine MatrixPatchTM) can efficiently support the proliferation and cardiac differentiation of CardiopoieticAF stem cells and represent a useful cellular scaffold to be transplanted with stem cells in animal hosts.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Matriz Extracelular/química , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Líquido Amniótico/metabolismo , Animais , Adesão Celular , Proliferação de Células , Colágeno , Combinação de Medicamentos , Matriz Extracelular/metabolismo , Feminino , Cavalos , Humanos , Laminina , Masculino , Miócitos Cardíacos/metabolismo , Proteoglicanas , Células-Tronco/metabolismo , Suínos
8.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842709

RESUMO

The health of peri-implant soft tissues is important for the long-term success rate of dental implants and the surface topography is pivotal in influencing it. Thus, the aim of this study was to evaluate, in human patients, the inflammatory mucosal microenvironment in the tissue surrounding a new, nanoscale, laser-treated healing abutment characterized by engineered nanopores versus a standard machined-surface. Analyses of anti- and pro-inflammatory markers, cytokeratins, desmosomal proteins and scanning electron microscopy were performed in 30 soft-tissue biopsies retrieved during second-stage surgery. The results demonstrate that the soft tissue surrounding the laser-treated surface was characterized by a lower grade of inflammation than the one facing the machined-surface, which, in turn, showed a disrupted epithelium and altered desmosomes. Moreover, higher adhesion of the epithelial cells on the laser-treated surface was detected compared to the machined one. In conclusion, the laser-treated surface topography seems to play an important role not only in cell adhesion, but also on the inflammatory makers' expression of the soft tissue microenvironment. Thus, from a clinical point of view, the use of this kind of topography may be of crucial importance not only on healing abutments but also on prosthetic ones.


Assuntos
Dente Suporte , Implantes Dentários , Gengiva/fisiologia , Idoso , Adesão Celular , Feminino , Gengiva/citologia , Gengivite/etiologia , Gengivite/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Queratinas , Terapia a Laser/métodos , Masculino , Metaloproteinase 9 da Matriz/genética , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Nanoporos , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Necrose Tumoral alfa/genética
9.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934825

RESUMO

One of the main aims in regenerative medicine is to find stem cells that are easy to obtain and are safe and efficient in either an autologous or allogenic host when transplanted. This review provides an overview of the potential use of the fetal annexes in regenerative medicine: we described the formation of the annexes, their immunological features, the new advances in the phenotypical characterization of fetal annexes-derived stem cells, the progressions obtained in the analysis of both their differentiative potential and their secretoma, and finally, the potential use of decellularized fetal membranes. Normally discarded as medical waste, the umbilical cord and perinatal tissue not only represent a rich source of stem cells but can also be used as a scaffold for regenerative medicine, providing a suitable environment for the growth and differentiation of stem cells.


Assuntos
Feto/citologia , Medicina Regenerativa , Diferenciação Celular , Humanos , Comunicação Parácrina , Células-Tronco/citologia , Geleia de Wharton/citologia
10.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284374

RESUMO

The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity. DCM, accounting for 50%-80% of deaths in diabetic patients, represents a worldwide problem for human health and related economics. Optimal glycemic control is not sufficient to prevent DCM, which derives from heart remodeling and geometrical changes, with both consequences of critical events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation, behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as "passive" targets but as "active" units participating in the inflammatory dialogue between local and systemic counterparts underlying DCM development and maintenance. Some of the main biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are overviewed; particular attention is addressed to early inflammatory cytokines and chemokines, representing potential therapeutic targets for a prompt early intervention when no signs or symptoms of DCM are manifesting yet. DCM clinical management still represents a challenge and further translational investigations, including studies at female/male cell level, are warranted.


Assuntos
Cardiomiopatias Diabéticas/patologia , Miócitos Cardíacos/patologia , Animais , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Miócitos Cardíacos/metabolismo
11.
J Cell Physiol ; 231(3): 576-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26205888

RESUMO

INTRODUCTION: IL-6 influences several biological processes, including cardiac stem cell and cardiomyocyte physiology. Although JAK-STAT3 activation is the defining feature of IL-6 signaling, signaling molecules such as PI3K, PKCs, and ERK1/2 are also activated and elicit different responses. Moreover, most studies on the specific role of these signaling molecules focus on the adult heart, and few studies are available on the biological effects evoked by IL-6 in embryonic cardiomyocytes. AIM: The aim of this study was to clarify the biological response of embryonic heart derived cells to IL-6 by analyzing the morphological modifications and the signaling cascades evoked by the cytokine in H9c2 cells. RESULTS: IL-6 stimulation determined the terminal differentiation of H9c2 cells, as evidenced by the increased expression of cardiac transcription factors (NKX2.5 and GATA4), structural proteins (α-myosin heavy chain and cardiac Troponin T) and the gap junction protein Connexin 43. This process was mediated by the rapid modulation of PI3K, Akt, PTEN, and PKCζ phosphorylation levels. PI3K recruitment was an upstream event in the signaling cascade and when PI3K was inhibited, IL-6 failed to modify PKCζ, PTEN, and Akt phosphorylation. Blocking PKCζ activity affected only PTEN and Akt. Finally, the overexpression of a constitutively active form of PKCζ in H9c2 cells largely mimicked the morphological and molecular effects evoked by IL-6. CONCLUSIONS: This study demonstrated that IL-6 induces the cardiac differentiation of H9c2 embryonic cells though a signaling cascade that involves PI3K, PTEN, and PKCζ activities.


Assuntos
Diferenciação Celular/fisiologia , Interleucina-6/metabolismo , Miócitos Cardíacos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Ativação Enzimática , Miócitos Cardíacos/metabolismo , Ratos , Miosinas Ventriculares/metabolismo
12.
Blood ; 121(17): 3345-63, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23462118

RESUMO

Primary myelofibrosis (PMF) is characterized by fibrosis, ineffective hematopoiesis in marrow, and hematopoiesis in extramedullary sites and is associated with abnormal megakaryocyte (MK) development and increased transforming growth factor (TGF)-ß1 release. To clarify the role of TGF-ß1 in the pathogenesis of this disease, the TGF-ß1 signaling pathway of marrow and spleen of the Gata1(low) mouse model of myelofibrosis (MF) was profiled and the consequences of inhibition of TGF-ß1 signaling on disease manifestations determined. The expression of 20 genes in marrow and 36 genes in spleen of Gata1(low) mice was altered. David-pathway analyses identified alterations of TGF-ß1, Hedgehog, and p53 signaling in marrow and spleen and of mammalian target of rapamycin (mTOR) in spleen only and predicted that these alterations would induce consequences consistent with the Gata1(low) phenotype (increased apoptosis and G1 arrest both in marrow and spleen and increased osteoblast differentiation and reduced ubiquitin-mediated proteolysis in marrow only). Inhibition of TGF-ß1 signaling normalized the expression of p53-related genes, restoring hematopoiesis and MK development and reducing fibrosis, neovascularization, and osteogenesis in marrow. It also normalized p53/mTOR/Hedgehog-related genes in spleen, reducing extramedullary hematopoiesis. These data identify altered expression signatures of TGF-ß1 signaling that may be responsible for MF in Gata1(low) mice and may represent additional targets for therapeutic intervention in PMF.


Assuntos
Modelos Animais de Doenças , Fator de Transcrição GATA1/fisiologia , Mielofibrose Primária/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Medula Óssea/metabolismo , Medula Óssea/patologia , Estudos de Casos e Controles , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Citocinas/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Mielofibrose Primária/etiologia , Mielofibrose Primária/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/metabolismo , Baço/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Brain Sci ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38928553

RESUMO

Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.

14.
Blood ; 118(2): 425-36, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21355091

RESUMO

Glucocorticoid receptor (GR) agonists increase erythropoiesis in vivo and in vitro. To clarify the effect of the dominant negative GRß isoform (unable to bind STAT-5) on erythropoiesis, erythroblast (EB) expansion cultures of mononuclear cells from 18 healthy (nondiseased) donors (NDs) and 16 patients with polycythemia vera (PV) were studied. GRß was expressed in all PV EBs but only in EBs from 1 ND. The A3669G polymorphism, which stabilizes GRß mRNA, had greater frequency in PV (55%; n = 22; P = .0028) and myelofibrosis (35%; n = 20) patients than in NDs (9%; n = 22) or patients with essential thrombocythemia (6%; n = 15). Dexamethasone stimulation of ND cultures increased the number of immature EBs characterized by low GATA1 and ß-globin expression, but PV cultures generated great numbers of immature EBs with low levels of GATA1 and ß-globin irrespective of dexamethasone stimulation. In ND EBs, STAT-5 was not phosphorylated after dexamethasone and erythropoietin treatment and did not form transcriptionally active complexes with GRα, whereas in PV EBs, STAT-5 was constitutively phosphorylated, but the formation of GR/STAT-5 complexes was prevented by expression of GRß. These data indicate that GRß expression and the presence of A3669G likely contribute to development of erythrocytosis in PV and provide a potential target for identification of novel therapeutic agents.


Assuntos
Células Eritroides/metabolismo , Células Eritroides/patologia , Policitemia Vera/genética , Policitemia Vera/patologia , Receptores de Glucocorticoides/genética , Sequência de Bases , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Células Eritroides/efeitos dos fármacos , Expressão Gênica , Genes Dominantes/genética , Genes Dominantes/fisiologia , Glucocorticoides/farmacologia , Humanos , Janus Quinase 2/genética , Modelos Biológicos , Dados de Sequência Molecular , Policitemia/genética , Policitemia/patologia , Policitemia Vera/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Isoformas de Proteínas/genética
15.
J Histochem Cytochem ; 71(4): 199-209, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013268

RESUMO

Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.


Assuntos
Betaína , Atrofia Muscular , Fator de Necrose Tumoral alfa , Humanos , Betaína/farmacologia , Linhagem Celular , Citocinas , Inflamação/patologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo
16.
Sci Rep ; 13(1): 21907, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081991

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls (PFs) are chemicals leached from plastics and other household products, and humans are unavoidably exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were identified with high accuracies (0.88-0.96). Assessment of the phenotypic feature contribution to the classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological characterization in the future.


Assuntos
Fluorocarbonos , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Aprendizado de Máquina , Fluorocarbonos/farmacologia
17.
Biomolecules ; 12(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551178

RESUMO

Although cardiovascular diseases (CVD) are the leading cause of non-communicable diseases-dependent death worldwide, their effects are still largely underestimated in women [...].


Assuntos
Doenças Cardiovasculares , Humanos , Feminino , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/terapia , Fatores de Risco
18.
Front Cell Dev Biol ; 10: 936990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938174

RESUMO

Human amniotic fluids stem cells (hAFSCs) can be easily isolated from the amniotic fluid during routinely scheduled amniocentesis. Unlike hiPSCs or hESC, they are neither tumorigenic nor immunogenic and their use does not rise ethical or safety issues: for these reasons they may represent a good candidate for the regenerative medicine. hAFSCs are generally considered multipotent and committed towards the mesodermal lineages; however, they express many pluripotent markers and share some epigenetic features with hiPSCs. Hence, we hypothesized that hAFSCs may overcome their mesodermal commitment differentiating into to ectodermal lineages. Here we demonstrated that by the sequential exposure to specific factors, hAFSCs can give rise to spinal motor neurons (MNs), as evidenced by the gradual gene and protein upregulation of early and late MN markers (PAX6, ISL1, HB9, NF-L, vAChT). When co-cultured with myotubes, hAFSCs-derived MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle contractions. These data demonstrated the hAFSCs are not restricted to mesodermal commitment and can generate functional MNs thus outlining an ethically acceptable strategy for the study and treatment of the neurodegenerative diseases.

19.
Front Cardiovasc Med ; 9: 893374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656402

RESUMO

Heart rate variability (HRV) is a reliable tool for the evaluation of several physiological factors modulating the heart rate (HR). Importantly, variations of HRV parameters may be indicative of cardiac diseases and altered psychophysiological conditions. Recently, several studies focused on procedures for contactless HR measurements from facial videos. However, the performances of these methods decrease when illumination is poor. Infrared thermography (IRT) could be useful to overcome this limitation. In fact, IRT can measure the infrared radiations emitted by the skin, working properly even in no visible light illumination conditions. This study investigated the capability of facial IRT to estimate HRV parameters through a face tracking algorithm and a cross-validated machine learning approach, employing photoplethysmography (PPG) as the gold standard for the HR evaluation. The results demonstrated a good capability of facial IRT in estimating HRV parameters. Particularly, strong correlations between the estimated and measured HR (r = 0.7), RR intervals (r = 0.67), TINN (r = 0.71), and pNN50 (%) (r = 0.70) were found, whereas moderate correlations for RMSSD (r = 0.58), SDNN (r = 0.44), and LF/HF (r = 0.48) were discovered. The proposed procedure allows for a contactless estimation of the HRV that could be beneficial for evaluating both cardiac and general health status in subjects or conditions where contact probe sensors cannot be used.

20.
iScience ; 25(10): 105197, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238899

RESUMO

Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA