Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Opt Express ; 29(3): 4559-4581, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771031

RESUMO

Single-photon detection is an invaluable tool for many applications ranging from basic research to consumer electronics. In this respect, the Single Photon Avalanche Diode (SPAD) plays a key role in enabling a broad diffusion of these techniques thanks to its remarkable performance, room-temperature operation, and scalability. In this paper we present a silicon technology that allows the fabrication of SPAD-arrays with an unprecedented combination of low timing jitter (95 ps FWHM) and high detection efficiency at red and near infrared wavelengths (peak of 70% at 650 nm, 45% at 800 nm). We discuss the device structure, the fabrication process, and we present a thorough experimental characterization of the fabricated detectors. We think that these results can pave the way to new exciting developments in many fields, ranging from quantum optics to single molecule spectroscopy.

2.
Opt Express ; 26(12): 15398-15410, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114802

RESUMO

Time-Correlated Single Photon Counting (TCSPC) is an essential tool in many scientific applications, where the recording of optical pulses with picosecond precision is required. Unfortunately, a key issue has to be faced: distortion phenomena can affect TCSPC experiments at high count rates. In order to avoid this problem, TCSPC experiments have been commonly carried out by limiting the maximum operating frequency of a measurement channel below 5% of the excitation frequency, leading to a long acquisition time. Recently, it has been demonstrated that matching the detector dead time to the excitation period allows to keep distortion around zero regardless of the rate of impinging photons. This solution paves the way to unprecedented measurement speed in TCSPC experiments. In this scenario, the front-end circuits that drive the detector play a crucial role in determining the performance of the system, both in terms of measurement speed and timing performance. Here we present two fully integrated front-end circuits for Single Photon Avalanche Diodes (SPADs): a fast Active Quenching Circuit (AQC) and a fully-differential current pick-up circuit. The AQC can apply very fast voltage variations, as short as 1.6ns, to reset external custom-technology SPAD detectors. A fast reset, indeed, is a key parameter to maximize the measurement speed. The current pick-up circuit is based on a fully differential structure which allows unprecedented rejection of disturbances that typically affect SPAD-based systems at the end of the dead time. The circuit permits to sense the current edge resulting from a photon detection with picosecond accuracy and precision even a few picoseconds after the end of the dead time imposed by the AQC. This is a crucial requirement when the system is operated at high rates. Both circuits have been deeply characterized, especially in terms of achievable measurement speed and timing performance.

3.
IEEE Photonics Technol Lett ; 30(6): 557-560, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29581700

RESUMO

In this letter, the development and the experimental characterization of a new photon detection module, based on a 32×1 red-enhanced single-photon avalanche diode (RE-SPAD) array, are presented. A custom-developed technology has been exploited to design a detector having large-area pixels (50-µm diameter) with optimized performance. With an excess bias voltage Voυ = 15 V, a photon detection efficiency as high as 57% at 600 nm (33% at 800 nm) is achieved, along with dark count rate in the kHz range and optical crosstalk probability as low as 0.29%. The remarkable detection efficiency of the RE-SPAD array makes the module particularly suitable for all applications where high detection efficiency in the red/near-infrared range is mandatory. As an example, the performance of the array module is demonstrated to match the demanding requirements of multispot single-molecule fluorescence spectroscopy.

4.
J Chem Phys ; 148(12): 123304, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604810

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Cinética , Fatores de Tempo
5.
Opt Express ; 24(16): 17819-31, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505749

RESUMO

Single photon avalanche diodes (SPADs) have been subject to a fast improvement in recent years. In particular, custom technologies specifically developed to fabricate SPAD devices give the designer the freedom to pursue the best detector performance required by applications. A significant breakthrough in this field is represented by the recent introduction of a red enhanced SPAD (RE-SPAD) technology, capable of attaining a good photon detection efficiency in the near infrared range (e.g. 40% at a wavelength of 800 nm) while maintaining a remarkable timing resolution of about 100ps full width at half maximum. Being planar, the RE-SPAD custom technology opened the way to the development of SPAD arrays particularly suited for demanding applications in the field of life sciences. However, to achieve such excellent performance custom SPAD detectors must be operated with an external active quenching circuit (AQC) designed on purpose. Next steps toward the development of compact and practical multichannel systems will require a new generation of monolithically integrated AQC arrays. In this paper we present a new, fully integrated AQC fabricated in a high-voltage 0.18 µm CMOS technology able to provide quenching pulses up to 50 Volts with fast leading and trailing edges. Although specifically designed for optimal operation of RE-SPAD devices, the new AQC is quite versatile: it can be used with any SPAD detector, regardless its fabrication technology, reaching remarkable count rates up to 80 Mcounts/s and generating a photon detection pulse with a timing jitter as low as 119 ps full width at half maximum. The compact design of our circuit has been specifically laid out to make this IC a suitable building block for monolithically integrated AQC arrays.

6.
IEEE Photonics Technol Lett ; 28(9): 1002-1005, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27175050

RESUMO

In this letter we present a compact photon detection module, based on an 8×8 array of single-photon avalanche diodes (SPADs). The use of a dedicated silicon technology for the fabrication of the sensors allows us to combine large active areas (50-µm diameter), high photon detection efficiency (49% at 550-nm wavelength) and low dark count rate. Thanks to a fully parallel architecture, the module provides voltage pulses synchronous to each photon detection for a maximum global count rate exceeding 1 Gcps. These properties makes the system suitable for operation in two different free-running modes. The first, suitable to acquire faint signals, allows multi-spot acquisitions and can be used to considerably reduce the measurement time in applications like single-molecule analysis. With the second it is possible to use all the pixels in a combined mode, to extend and move the dynamic range of the module to very high count rates and to attain number resolving capabilities.

7.
IEEE J Sel Top Quantum Electron ; 20(6): 38044201-380442020, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25309114

RESUMO

Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements.

8.
Rev Sci Instrum ; 93(4): 043103, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489934

RESUMO

At the present time, Single Photon Avalanche Diodes (SPADs) are the enabling devices in many applications, ranging from medical imaging to laser ranging and from remote sensing to quantum key distribution. Even though they belong to different scientific domains, these applications share the need for a detector capable of attaining high count rates possibly without trading it off with other key detector's features, such as afterpulsing probability, photon detection efficiency, and dark counts. In this work, we present the characterization of a fast integrated active quenching circuit capable of driving high-performance external custom-technology SPADs for single photon detection in the visible wavelength range. Combining the prompt intervention of the electronic circuitry and the performance of a custom-technology SPAD, we attained count rates up to 250 MCps while keeping the afterpulsing probability within 2%.


Assuntos
Condução de Veículo , Semicondutores , Luz , Fótons , Probabilidade
9.
Opt Express ; 16(12): 8381-94, 2008 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-18545552

RESUMO

One of the main issues of Single Photon Avalanche Diode arrays is optical crosstalk. Since its intensity increases with reducing the distance between devices, this phenomenon limits the density of integration within arrays. In the past optical crosstalk was ascribed essentially to the light propagating from one detector to another through direct optical paths. Accordingly, reflecting trenches between devices were proposed to prevent it, but they proved to be not completely effective. In this paper we will present experimental evidence that a significant contribution to optical crosstalk comes from light reflected internally off the bottom of the chip, thus being impossible to eliminate it completely by means of trenches. We will also propose an optical model to predict the dependence of crosstalk on the distance between devices.


Assuntos
Artefatos , Modelos Teóricos , Óptica e Fotônica/instrumentação , Fotometria/instrumentação , Semicondutores , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Espalhamento de Radiação
10.
Electrophoresis ; 29(24): 4972-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19130576

RESUMO

A novel microchip electrophoresis instrument based on single-photon avalanche diodes was used for the molecular characterization of mutations in disease genes. The identification of the main mutation causing cystic fibrosis, named DeltaF508, by the Amplification Refractory Mutation System was used to validate the technology. In our implemented protocol the wild-type and mutant allele-specific primers are labeled with Cy5 and Cy5.5, respectively. The protocol enables the amplification of the DNA sample in a single PCR. The genotype was deduced from the fluorescence of the amplicons run in the CE microchip. Validation on 15 DNA samples from either homozygous wild-type or heterozygous and homozygous mutated control subjects proved the complete reliability of the system, thus confirming its high diagnostic potential.


Assuntos
Análise Mutacional de DNA/métodos , Eletroforese em Microchip/instrumentação , Mutação/genética , Fótons , DNA/análise , DNA/genética , Eletroforese em Microchip/métodos
11.
Nucl Instrum Methods Phys Res A ; 9(12): 255-258, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31223178

RESUMO

Single-molecule fluorescence spectroscopy (SMFS), based on the detection of individual molecules freely diffusing through the excitation spot of a confocal microscope, has allowed unprecedented insights into biological processes at the molecular level, but suffers from limited throughput. We have recently introduced a multispot version of SMFS, which allows achieving high-throughput SMFS by virtue of parallelization, and relies on custom silicon single-photon avalanche diode (SPAD) detector arrays. Here, we examine the premise of this parallelization approach, which is that data acquired from different spots is uncorrelated. In particular, we measure the optical crosstalk characteristics of the two 48-pixel SPAD arrays used in our recent SMFS studies, and demonstrate that it is negligible (crosstalk probability ≤ 1.1 10-3) and undetectable in cross-correlation analysis of actual single-molecule fluorescence data.

12.
Rev Sci Instrum ; 78(6): 063105, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17614603

RESUMO

This article reports a complete characterization of single photon avalanche diodes (SPADs) at temperatures down to 120 K. We show that deep cooling of the device by means of a compact liquid-nitrogen Dewar brings several advantages, such as extremely low dark counting rates (down to 1 counts/s), better time resolution, and higher quantum efficiency in the visible range. By using a special current pick-off circuit, we achieved a time resolution of 20 ps full width at half maximum at 120 K for a 50 mum diameter SPAD. Afterpulsing effects are avoided by using a sufficiently long hold-off time (microseconds).


Assuntos
Congelamento , Fótons , Radiometria/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Silício/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Proc SPIE Int Soc Opt Eng ; 102292017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28781415

RESUMO

In recent years the development of Single-Photon Avalanche Diodes (SPADs) had a big impact on single-photon counting applications requiring high-performance detectors in terms of Dark Count Rate (DCR), Photon Detection Efficiency (PDE), afterpulsing probability, etc. Among these, it is possible to find applications in single-molecule fluorescence spectroscopy that suffer from long-time measurements. In these cases SPAD arrays can be a solution in order to shorten the measurement time, thanks to the high grade of parallelism they can provide. Moreover, applications in other fields (e.g. astronomy) demand for large-area single-photon detectors, able also to handle very high count rates. For these reasons we developed a new single-photon detection module, featuring an 8 × 8 SPAD array. Thanks to a dedicated silicon technology, the performance of the detector have been finely optimized, reaching a 49% detection efficiency at 550 nm, as well as low dark counts (2 kcount/s maximum all over the array). This module can be used in two different modes: the first is a multi-spot configuration, allowing the acquisition of 64 optical signals at the same time and considerably reducing the time needed for a measurement. The second operation mode instead exploits all the pixels in a combined mode, allowing the detection of a 64-times higher maximum photon rate (up to 2 Gcount/s). In addition, this configuration provides also an extended dynamic range and allows to attain photon number resolving capabilities. Dark counts, detection efficiency, linearity, afterpulsing and crosstalk probability have been characterized at different operating conditions.

14.
PLoS One ; 12(4): e0175766, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419142

RESUMO

We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.


Assuntos
DNA/análise , Microscopia/instrumentação , Espectrometria de Fluorescência/instrumentação , RNA Polimerases Dirigidas por DNA/metabolismo , Difusão , Desenho de Equipamento , Escherichia coli/enzimologia , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/instrumentação , Cinética , Lasers , Microscopia Confocal/instrumentação , Regiões Promotoras Genéticas , Transcrição Gênica
15.
Proc SPIE Int Soc Opt Eng ; 100712017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28603333

RESUMO

Single-molecule spectroscopy on freely-diffusing molecules allows detecting conformational changes of biomolecules without perturbation from surface immobilization. Resolving fluorescence lifetimes increases the sensitivity in detecting conformational changes and overcomes artifacts common in intensity-based measurements. Common to all freely-diffusing techniques, however, are the long acquisition times. We report a time-resolved multispot system employing a 16-channel SPAD array and TCSPC electronics, which overcomes the throughput issue. Excitation is obtained by shaping a 532 nm pulsed laser into a line, matching the linear SPAD array geometry. We show that the line-excitation is a robust and cost-effective approach to implement multispot systems based on linear detector arrays.

16.
Proc SPIE Int Soc Opt Eng ; 98582016 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-27761058

RESUMO

In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/near-infrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure.

17.
Proc SPIE Int Soc Opt Eng ; 87272013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24353395

RESUMO

In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications.

18.
Proc SPIE Int Soc Opt Eng ; 86312013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24357913

RESUMO

In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12×4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the trade-offs between the detectors' performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50µm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors.

19.
Proc SPIE Int Soc Opt Eng ; 85902013 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-24371508

RESUMO

Single-molecule fluorescence spectroscopy of freely diffusing molecules in solution is a powerful tool used to investigate the properties of individual molecules. Single-Photon Avalanche Diodes (SPADs) are the detectors of choice for these applications. Recently a new type of SPAD detector was introduced, dubbed red-enhanced SPAD (RE-SPAD), with good sensitivity throughout the visible spectrum and with excellent timing performance. We report a characterization of this new detector for single-molecule fluorescence resonant energy transfer (smFRET) studies on freely diffusing molecules in a confocal geometry and alternating laser excitation (ALEX) scheme. We use a series of doubly-labeled DNA molecules with donor-to-acceptor distances covering the whole range of useful FRET values. Both intensity-based (µs-ALEX) and lifetime-based (ns-ALEX) measurements are presented and compared to identical measurements performed with standard thick SPADs. Our results demonstrate the great potential of this new detector for smFRET measurements and beyond.

20.
Proc SPIE Int Soc Opt Eng ; 85902013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24386541

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) techniques are now widely used to address outstanding problems in biology and biophysics. In order to study freely diffusing molecules, current approaches consist in exciting a low concentration (<100 pM) sample with a single confocal spot using one or more lasers and detecting the induced single-molecule fluorescence in one or more spectrally- and/or polarization-distinct channels using single-pixel Single-Photon Avalanche Diodes (SPADs). A large enough number of single-molecule bursts must be accumulated in order to compute FRET efficiencies with sufficient statistics. As a result, the minimum timescale of observable phenomena is set by the minimum acquisition time needed for accurate measurements, typically a few minutes or more, limiting this approach mostly to equilibrium studies. Increasing smFRET analysis throughput would allow studying dynamics with shorter timescales. We recently demonstrated a new multi-spot excitation approach, employing a novel multi-pixel SPAD array, using a simplified dual-view setup in which a single 8-pixel SPAD array was used to collect FRET data from 4 independent spots. In this work we extend our results to 8 spots and use two 8-SPAD arrays to collect donor and acceptor photons and demonstrate the capabilities of this system by studying a series of doubly labeled dsDNA samples with different donor-acceptor distances ranging from low to high FRET efficiencies. Our results show that it is possible to enhance the throughput of smFRET measurements in solution by almost one order of magnitude, opening the way for studies of single-molecule dynamics with fast timescale once larger SPAD arrays become available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA