Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7990, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580717

RESUMO

One of the significant aromatic plants applied in food and pharma is cumin. Despite its massive trading in Egypt, there are no comprehensive reports on cumin landraces profile screening. This study aimed to investigate the variation in seeds' physical and biochemical profiles and genetic diversity as well as assess the efficiency of seeds' germination under salinity stress. Consequently, during the 2020/2021 growing season, four common cumin seed landraces were gathered from various agro-climatic regions: El Gharbia, El Menia, Assiut, and Qena. Results showed a significant variation in physical profile among the four seeds of landraces. In addition, Assiut had the highest percentage of essential oil at 8.04%, whilst Qena had the largest amount of cumin aldehyde, the primary essential oil component, at 25.19%. Lauric acid was found to be the predominant fatty acid (54.78 to 62.73%). According to ISSR amplification, El Menia presented a negative unique band, whereas other landraces offered a positive band. Additionally, the cumin genotypes were separated into two clusters by the dendrogram, with El Gharbia being located in an entirely separate cluster. There were two sub-clusters within the other cluster: El Menia in one and Assiut and Qena in the other. Moreover, the germination sensitivity to the diverse salinity concentrations (control, 4, 8, 12, and 16 dS/m) findings showed that landraces exhibited varying responses to increased salinity when El Gharbia and El Menia showed a moderate response at four dS/m. Whilst, Qena landraces showed supreme values among other landraces under 12 and 16 dS/m. The majority of the examined features had strong positive associations over a range of salinity levels, according to phenotypic correlation coefficient analysis. To accomplish the aims of sustainable agriculture in Egypt, it would be imperative that the potential breeding program for cumin landraces consider this screening study.


Assuntos
Cuminum , Óleos Voláteis , Egito , Melhoramento Vegetal/métodos , Genótipo
2.
Environ Sci Pollut Res Int ; 28(34): 47196-47212, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33886052

RESUMO

As the green tactics for enhancing plant growth and production using naturally occurring materials are highly needed, it is important to use the nanoformulation of these materials as an attractive novel technique. Therefore, this research has been performed to evaluate the plants' morphological traits, the qualitative parameters, and molecular genetic characteristics using random amplified polymorphic DNA (RAPD) of French basil independence on growth biostimulators and their nanocomposite. The treatments included normal formulations and nanocomposite formulation of humic acid (5 mM HA), salicylic acid (1.4 mM SA), and glycyrrhizic acid ammonium salt (0.4 mM GA) and control treatment (water application). The results show that foliar spray with HA, SA, GA, and their nanocomposites significantly increased (p ≤ 0.05) on all vegetative growth characters, photosynthetic pigments, oil yield/plant, mineral content, and antibacterial activity as compared with control plants. Also, 1,1-diphenyl-2-picrylhydrazyl (DPPH) values of different samples used varied from 70.63 to 74.93%, with a significant increase compared to untreated plants. The most marked increases have been observed in treated plants with biostimulants in the nanocomposites form than in the natural form. On the other hand, GA and its nanocomposite showed variable effects on basil plants and gave the lowest increase values in all parameters than the other biostimulant but have high antimicrobial activity. For the molecular study, ten selected primers displayed a total of 288 amplified fragments scored per primer ranging from 7 to 46 fragments; 157 bands were polymorphic with 69% polymorphism. It could be concluded that humic acid and its nanocomposite are the most effective biostimulants that increased plant productivity and oil content.


Assuntos
Nanocompostos , Ocimum basilicum , Ácido Glicirrízico , Substâncias Húmicas , Folhas de Planta , Técnica de Amplificação ao Acaso de DNA Polimórfico , Ácido Salicílico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA