Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502710

RESUMO

Autism spectrum disorder (ASD) is a neurodegenerative disorder characterized by lingual and social disabilities. The autism diagnostic observation schedule is the current gold standard for ASD diagnosis. Developing objective computer aided technologies for ASD diagnosis with the utilization of brain imaging modalities and machine learning is one of main tracks in current studies to understand autism. Task-based fMRI demonstrates the functional activation in the brain by measuring blood oxygen level-dependent (BOLD) variations in response to certain tasks. It is believed to hold discriminant features for autism. A novel computer aided diagnosis (CAD) framework is proposed to classify 50 ASD and 50 typically developed toddlers with the adoption of CNN deep networks. The CAD system includes both local and global diagnosis in a response to speech task. Spatial dimensionality reduction with region of interest selection and clustering has been utilized. In addition, the proposed framework performs discriminant feature extraction with continuous wavelet transform. Local diagnosis on cingulate gyri, superior temporal gyrus, primary auditory cortex and angular gyrus achieves accuracies ranging between 71% and 80% with a four-fold cross validation technique. The fused global diagnosis achieves an accuracy of 86% with 82% sensitivity, 92% specificity. A brain map indicating ASD severity level for each brain area is created, which contributes to personalized diagnosis and treatment plans.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Análise de Ondaletas
2.
Multimed Tools Appl ; 81(18): 25101-25145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342327

RESUMO

Recently, there has been a rapid growth in the utilization of medical images in telemedicine applications. The authors in this paper presented a detailed discussion of different types of medical images and the attacks that may affect medical image transmission. This survey paper summarizes existing medical data security approaches and the different challenges associated with them. An in-depth overview of security techniques, such as cryptography, steganography, and watermarking are introduced with a full survey of recent research. The objective of the paper is to summarize and assess the different algorithms of each approach based on different parameters such as PSNR, MSE, BER, and NC.

3.
Med Phys ; 48(5): 2315-2326, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33378589

RESUMO

PURPOSE: Task-based fMRI (TfMRI) is a diagnostic imaging modality for observing the effects of a disease or other condition on the functional activity of the brain. Autism spectrum disorder (ASD) is a pervasive developmental disorder associated with impairments in social and linguistic abilities. Machine learning algorithms have been widely utilized for brain imaging aiming for objective ASD diagnostics. Recently, deep learning methods have been gaining more attention for fMRI classification. The goal of this paper is to develop a convolutional neural network (CNN)-based framework to help in global diagnosis of ASD using TfMRI data that are collected from a response to speech experiment. METHODS: To achieve this goal, the proposed framework adopts a novel imaging marker integrating both spatial and temporal information that are related to the functional activity of the brain. The developed pipeline consists of three main components. In the first step, the collected TfMRI data are preprocessed and parcellated using the Harvard-Oxford probabilistic atlas included with the fMRIB Software Library (FSL). Second, a group analysis using FSL is performed between ASD and typically developing (TD) children to identify significantly activated brain areas in response to the speech task. In order to reduce brain spatial dimensionality, a K-means clustering technique is performed on such significant brain areas. Informative blood oxygen level-dependent (BOLD) signals are extracted from each cluster. A compression step for each extracted BOLD signal using discrete wavelet transform (DWT) has been proposed. The adopted wavelets are similar to the expected hemodynamic response which enables DWT to compress the BOLD signal while highlighting its activation information. Finally, a deep learning 2D CNN network is used to classify the patients as ASD or TD based on extracted features from the previous step. RESULTS: Preliminary results on 100 TfMRI dataset (50 ASD, 50 TD) obtain 80% correct global classification using tenfold cross validation (with sensitivity = 84%, specificity = 76%). CONCLUSION: The experimental results show the high accuracy of the proposed framework and hold promise for the presented framework as a helpful adjunct to currently used ASD diagnostic tools.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Diagnóstico Precoce , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA