Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Biol Chem ; 300(7): 107478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879009

RESUMO

Antigenically sequence variable M proteins of the major bacterial pathogen Streptococcus pyogenes (Strep A) are responsible for recruiting human C4b-binding protein (C4BP) to the bacterial surface, which enables Strep A to evade destruction by the immune system. The most sequence divergent portion of M proteins, the hypervariable region (HVR), is responsible for binding C4BP. Structural evidence points to the conservation of two C4BP-binding sequence patterns (M2 and M22) in the HVR of numerous M proteins, with this conservation applicable to vaccine immunogen design. These two patterns, however, only partially explain C4BP binding by Strep A. Here, we identified several M proteins that lack these patterns but still bind C4BP and determined the structures of two, M68 and M87 HVRs, in complex with a C4BP fragment. Mutagenesis of these M proteins led to the identification of amino acids that are crucial for C4BP binding, enabling formulation of new C4BP-binding patterns. Mutagenesis was also carried out on M2 and M22 proteins to refine or generate experimentally grounded C4BP-binding patterns. The M22 pattern was the most prevalent among M proteins, followed by the M87 and M2 patterns, while the M68 pattern was rare. These patterns, except for M68, were also evident in numerous M-like Enn proteins. Binding of C4BP via these patterns to Enn proteins was verified. We conclude that C4BP-binding patterns occur frequently in Strep A strains of differing M types, being present in their M or Enn proteins, or frequently both, providing further impetus for their use as vaccine immunogens.


Assuntos
Antígenos de Bactérias , Proteína de Ligação ao Complemento C4b , Streptococcus pyogenes , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/química , Proteína de Ligação ao Complemento C4b/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/química , Ligação Proteica , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
2.
J Biol Chem ; 299(8): 104980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390991

RESUMO

Coiled coil-forming M proteins of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes (strep A) are immunodominant targets of opsonizing antibodies. However, antigenic sequence variability of M proteins into >220 M types, as defined by their hypervariable regions (HVRs), is considered to limit M proteins as vaccine immunogens because of type specificity in the antibody response. Surprisingly, a multi-HVR immunogen in clinical vaccine trials was shown to elicit M-type crossreactivity. The basis for this crossreactivity is unknown but may be due in part to antibody recognition of a 3D pattern conserved in many M protein HVRs that confers binding to human complement C4b-binding protein (C4BP). To test this hypothesis, we investigated whether a single M protein immunogen carrying the 3D pattern would elicit crossreactivity against other M types carrying the 3D pattern. We found that a 34-amino acid sequence of S. pyogenes M2 protein bearing the 3D pattern retained full C4BP-binding capacity when fused to a coiled coil-stabilizing sequence from the protein GCN4. We show that this immunogen, called M2G, elicited cross-reactive antibodies against a number of M types that carry the 3D pattern but not against those that lack the 3D pattern. We further show that the M2G antiserum-recognized M proteins displayed natively on the strep A surface and promoted the opsonophagocytic killing of strep A strains expressing these M proteins. As C4BP binding is a conserved virulence trait of strep A, we propose that targeting the 3D pattern may prove advantageous in vaccine design.


Assuntos
Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte , Streptococcus pyogenes , Humanos , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Ligação Proteica , Streptococcus pyogenes/imunologia , Reações Cruzadas
3.
PLoS Pathog ; 18(9): e1010829, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103556

RESUMO

Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired infections. Numerous clinical strains of E. faecalis harbor a large pathogenicity island that encodes enterococcal surface protein (Esp), which is suggested to promote biofilm production and virulence, but this remains controversial. To resolve this issue, we characterized the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray scattering indicated that the N-terminal region had a globular head, which consisted of two DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-terminal region was not required for biofilm production but instead significantly strengthened biofilms against mechanical or degradative disruption, greatly increasing retention of Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm strengthening depended on protein stability. A truncated fragment of the first DEv-Ig domain, plausibly generated by a host protease, was the least stable and sufficient to strengthen biofilms at pH ≤ 5.0, while the entire N-terminal region and intact Esp on the enterococcal surface was more stable and required a pH ≤ 4.3. These results suggested a virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host environments.


Assuntos
Infecções por Bactérias Gram-Positivas , Proteínas de Membrana , Proteínas de Bactérias/metabolismo , Biofilmes , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus faecalis , Humanos , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo
4.
PLoS Pathog ; 17(2): e1009248, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630944

RESUMO

M and M-like proteins are major virulence factors of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes. These proteins confer resistance against innate and adaptive immune responses by recruiting specific human proteins to the streptococcal surface. Nonimmune recruitment of immunoglobulins G (IgG) and A (IgA) through their fragment crystallizable (Fc) domains by M and M-like proteins was described almost 40 years ago, but its impact on virulence remains unresolved. These interactions have been suggested to be consequential under immune conditions at mucosal surfaces and in secretions but not in plasma, while other evidence suggests importance in evading phagocytic killing in nonimmune blood. Recently, an indirect effect of Fc-binding through ligand-induced stabilization of an M-like protein was shown to increase virulence. Nonimmune recruitment has also been seen to contribute to tissue damage in animal models of autoimmune diseases triggered by S. pyogenes infection. The damage was treatable by targeting Fc-binding. This and other potential therapeutic applications warrant renewed attention to Fc-binding by M and M-like proteins.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Animais , Humanos , Infecções Estreptocócicas/microbiologia
5.
Nucleic Acids Res ; 49(2): 1033-1045, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367793

RESUMO

Diversity-generating retroelements (DGRs) vary protein sequences to the greatest extent known in the natural world. These elements are encoded by constituents of the human microbiome and the microbial 'dark matter'. Variation occurs through adenine-mutagenesis, in which genetic information in RNA is reverse transcribed faithfully to cDNA for all template bases but adenine. We investigated the determinants of adenine-mutagenesis in the prototypical Bordetella bacteriophage DGR through an in vitro system composed of the reverse transcriptase bRT, Avd protein, and a specific RNA. We found that the catalytic efficiency for correct incorporation during reverse transcription by the bRT-Avd complex was strikingly low for all template bases, with the lowest occurring for adenine. Misincorporation across a template adenine was only somewhat lower in efficiency than correct incorporation. We found that the C6, but not the N1 or C2, purine substituent was a key determinant of adenine-mutagenesis. bRT-Avd was insensitive to the C6 amine of adenine but recognized the C6 carbonyl of guanine. We also identified two bRT amino acids predicted to nonspecifically contact incoming dNTPs, R74 and I181, as promoters of adenine-mutagenesis. Our results suggest that the overall low catalytic efficiency of bRT-Avd is intimately tied to its ability to carry out adenine-mutagenesis.


Assuntos
Adenina , Bacteriófagos/genética , Mutagênese , Retroelementos/genética , Adenina/química , Arginina/química , Sequência de Bases , Bordetella/virologia , Catálise , Sistema Livre de Células , Simulação por Computador , DNA Complementar/genética , Glicina/química , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Conformação Proteica , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Recombinantes/metabolismo
6.
Microb Pathog ; 169: 105636, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724830

RESUMO

Streptococcus pyogenes is a pre-eminent human pathogen, and classified by the hypervariable sequence of the emm gene encoding the cell surface M protein. Among a diversity of M/emm types, the prevalence of the M/emm87 strain has been steadily increasing in invasive S. pyogenes infections. Although M protein is the major virulence factor for globally disseminated M/emm1 strain, it is unclear if or how the corresponding M protein of M/emm87 strain (M87 protein) functions as a virulence factor. Here, we use targeted mutagenesis to show that the M87 protein contributes to bacterial resistance to neutrophil and whole blood killing and promotes the release of mature IL-1ß from macrophages. While deletion of emm87 did not influence epithelial cell adherence and nasal colonization, it significantly reduced S. pyogenes-induced mortality and bacterial loads in a murine systemic infection model. Our data suggest that emm87 is involved in pathogenesis by modulating the interaction between S. pyogenes and innate immune cells.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Humanos , Imunidade Inata , Camundongos , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Nucleic Acids Res ; 46(18): 9711-9725, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007279

RESUMO

Diversity-generating retroelements (DGRs) create unparalleled levels of protein sequence variation through mutagenic retrohoming. Sequence information is transferred from an invariant template region (TR), through an RNA intermediate, to a protein-coding variable region. Selective infidelity at adenines during transfer is a hallmark of DGRs from disparate bacteria, archaea, and microbial viruses. We recapitulated selective infidelity in vitro for the prototypical Bordetella bacteriophage DGR. A complex of the DGR reverse transcriptase bRT and pentameric accessory variability determinant (Avd) protein along with DGR RNA were necessary and sufficient for synthesis of template-primed, covalently linked RNA-cDNA molecules, as observed in vivo. We identified RNA-cDNA molecules to be branched and most plausibly linked through 2'-5' phosphodiester bonds. Adenine-mutagenesis was intrinsic to the bRT-Avd complex, which displayed unprecedented promiscuity while reverse transcribing adenines of either DGR or non-DGR RNA templates. In contrast, bRT-Avd processivity was strictly dependent on the template, occurring only for the DGR RNA. This restriction was mainly due to a noncoding segment downstream of TR, which specifically bound Avd and created a privileged site for processive polymerization. Restriction to DGR RNA may protect the host genome from damage. These results define the early steps in a novel pathway for massive sequence diversification.


Assuntos
Adenina/metabolismo , Bacteriófagos/fisiologia , DNA Complementar/genética , DNA Polimerase Dirigida por RNA/fisiologia , Retroelementos/fisiologia , Moldes Genéticos , Bordetella/virologia , DNA Complementar/metabolismo , Variação Genética/efeitos dos fármacos , Variação Genética/fisiologia , Mutagênese Insercional/métodos , Mutagênese Sítio-Dirigida/métodos , Mutagênicos/metabolismo , Mutagênicos/farmacologia , DNA Polimerase Dirigida por RNA/metabolismo
8.
Nucleic Acids Res ; 46(1): 11-24, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186518

RESUMO

Diversity-generating retroelements (DGRs) are novel genetic elements that use reverse transcription to generate vast numbers of sequence variants in specific target genes. Here, we present a detailed comparative bioinformatic analysis that depicts the landscape of DGR sequences in nature as represented by data in GenBank. Over 350 unique DGRs are identified, which together form a curated reference set of putatively functional DGRs. We classify target genes, variable repeats and DGR cassette architectures, and identify two new accessory genes. The great variability of target genes implies roles of DGRs in many undiscovered biological processes. There is much evidence for horizontal transfers of DGRs, and we identify lineages of DGRs that appear to have specialized properties. Because GenBank contains data from only 10% of described species, the compilation may not be wholly representative of DGRs present in nature. Indeed, many DGR subtypes are present only once in the set and DGRs of the candidate phylum radiation bacteria, and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea archaea, are exceptionally diverse in sequence, with little information available about functions of their target genes. Nonetheless, this study provides a detailed framework for classifying and studying DGRs as they are uncovered and studied in the future.


Assuntos
Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Variação Genética , Genômica/métodos , Retroelementos/genética , Sequência de Aminoácidos , Sequência de Bases , Coleta de Dados/métodos , Evolução Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
9.
Proc Natl Acad Sci U S A ; 113(34): 9515-20, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27512043

RESUMO

The sequences of M proteins, the major surface-associated virulence factors of the widespread bacterial pathogen group A Streptococcus, are antigenically variable but have in common a strong propensity to form coiled coils. Paradoxically, these sequences are also replete with coiled-coil destabilizing residues. These features are evident in the irregular coiled-coil structure and thermal instability of M proteins. We present an explanation for this paradox through studies of the B repeats of the medically important M1 protein. The B repeats are required for interaction of M1 with fibrinogen (Fg) and consequent proinflammatory activation. The B repeats sample multiple conformations, including intrinsically disordered, dissociated, as well as two alternate coiled-coil conformations: a Fg-nonbinding register 1 and a Fg-binding register 2. Stabilization of M1 in the Fg-nonbinding register 1 resulted in attenuation of Fg binding as expected, but counterintuitively, so did stabilization in the Fg-binding register 2. Strikingly, these register-stabilized M1 proteins gained the ability to bind Fg when they were destabilized by a chaotrope. These results indicate that M1 stability is antithetical to Fg interaction and that M1 conformational dynamics, as specified by destabilizing residues, are essential for interaction. A "capture-and-collapse" model of association accounts for these observations, in which M1 captures Fg through a dynamic conformation and then collapses into a register 2-coiled coil as a result of stabilization provided by binding energy. Our results support the general conclusion that destabilizing residues are evolutionarily conserved in M proteins to enable functional interactions necessary for pathogenesis.


Assuntos
Aminoácidos/química , Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Fibrinogênio/química , Streptococcus pyogenes/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrinogênio/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
10.
Nature ; 472(7341): 64-8, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21475196

RESUMO

M1 protein, a major virulence factor of the leading invasive strain of group A Streptococcus, is sufficient to induce toxic-shock-like vascular leakage and tissue injury. These events are triggered by the formation of a complex between M1 and fibrinogen that, unlike M1 or fibrinogen alone, leads to neutrophil activation. Here we provide a structural explanation for the pathological properties of the complex formed between streptococcal M1 and human fibrinogen. A conformationally dynamic coiled-coil dimer of M1 was found to organize four fibrinogen molecules into a specific cross-like pattern. This pattern supported the construction of a supramolecular network that was required for neutrophil activation but was distinct from a fibrin clot. Disruption of this network into other supramolecular assemblies was not tolerated. These results have bearing on the pathophysiology of streptococcal toxic shock.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrinogênio/química , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Fibrinogênio/metabolismo , Fibrinogênio/ultraestrutura , Humanos , Modelos Moleculares , Ativação de Neutrófilo , Ligação Proteica , Conformação Proteica , Choque Séptico/microbiologia , Choque Séptico/fisiopatologia , Streptococcus pyogenes/química , Virulência , Fatores de Virulência/química
11.
BMC Struct Biol ; 16(1): 13, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27578274

RESUMO

BACKGROUND: Diversity-generating retroelements (DGRs) provide organisms with a unique means for adaptation to a dynamic environment through massive protein sequence variation. The potential scope of this variation exceeds that of the vertebrate adaptive immune system. DGRs were known to exist only in viruses and bacteria until their recent discovery in archaea belonging to the 'microbial dark matter', specifically in organisms closely related to Nanoarchaeota. However, Nanoarchaeota DGR variable proteins were unassignable to known protein folds and apparently unrelated to characterized DGR variable proteins. RESULTS: To address the issue of how Nanoarchaeota DGR variable proteins accommodate massive sequence variation, we determined the 2.52 Å resolution limit crystal structure of one such protein, AvpA, which revealed a C-type lectin (CLec)-fold that organizes a putative ligand-binding site that is capable of accommodating 10(13) sequences. This fold is surprisingly reminiscent of the CLec-folds of viral and bacterial DGR variable protein, but differs sufficiently to define a new CLec-fold subclass, which is consistent with early divergence between bacterial and archaeal DGRs. The structure also enabled identification of a group of AvpA-like proteins in multiple putative DGRs from uncultivated archaea. These variable proteins may aid Nanoarchaeota and these uncultivated archaea in symbiotic relationships. CONCLUSIONS: Our results have uncovered the widespread conservation of the CLec-fold in viruses, bacteria, and archaea for accommodating massive sequence variation. In addition, to our knowledge, this is the first report of an archaeal CLec-fold protein.


Assuntos
Archaea/genética , Proteínas Arqueais/química , Lectinas Tipo C/química , Retroelementos/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
12.
Proc Natl Acad Sci U S A ; 110(20): 8212-7, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23633572

RESUMO

Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Lipoproteínas/química , Retroelementos , Sequência de Bases , Membrana Celular/metabolismo , Ilhas Genômicas , Dados de Sequência Molecular , Mutagênese , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Propriedades de Superfície , Virulência
13.
J Biol Chem ; 289(6): 3539-46, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356958

RESUMO

Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.


Assuntos
Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Queratinócitos/metabolismo , Faringe/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular , Modelos Animais de Doenças , Exotoxinas/genética , Exotoxinas/imunologia , Exotoxinas/metabolismo , Fibrinogênio/genética , Fibrinogênio/imunologia , Fibrinogênio/metabolismo , Humanos , Queratinócitos/microbiologia , Queratinócitos/patologia , Camundongos , Faringe/microbiologia , Faringe/patologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
14.
J Biol Chem ; 289(46): 32303-32315, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266727

RESUMO

A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.


Assuntos
Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Membrana Celular/microbiologia , Biologia Computacional , Exotoxinas/metabolismo , Feminino , Teste de Complementação Genética , Histidina Quinase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Neutrófilos/microbiologia , Mutação Puntual , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Virulência
15.
Proc Natl Acad Sci U S A ; 108(35): 14649-53, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21873231

RESUMO

Anticipatory ligand binding through massive protein sequence variation is rare in biological systems, having been observed only in the vertebrate adaptive immune response and in a phage diversity-generating retroelement (DGR). Earlier work has demonstrated that the prototypical DGR variable protein, major tropism determinant (Mtd), meets the demands of anticipatory ligand binding by novel means through the C-type lectin (CLec) fold. However, because of the low sequence identity among DGR variable proteins, it has remained unclear whether the CLec fold is a general solution for DGRs. We have addressed this problem by determining the structure of a second DGR variable protein, TvpA, from the pathogenic oral spirochete Treponema denticola. Despite its weak sequence identity to Mtd (∼16%), TvpA was found to also have a CLec fold, with predicted variable residues exposed in a ligand-binding site. However, this site in TvpA was markedly more variable than the one in Mtd, reflecting the unprecedented approximate 10(20) potential variability of TvpA. In addition, similarity between TvpA and Mtd with formylglycine-generating enzymes was detected. These results provide strong evidence for the conservation of the formylglycine-generating enzyme-type CLec fold among DGRs as a means of accommodating massive sequence variation.


Assuntos
Lectinas Tipo C/química , Dobramento de Proteína , Retroelementos , Treponema/genética , Imunidade Adaptativa , Proteínas de Bactérias/química
16.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712057

RESUMO

Antigenically sequence variable M proteins of the major bacterial pathogen Streptococcus pyogenes (Strep A) are responsible for recruiting human C4b-binding protein (C4BP) to the bacterial surface, which enables Strep A to evade destruction by the immune system. The most sequence divergent portion of M proteins, the hypervariable region (HVR), is responsible for binding C4BP. Structural evidence points to the conservation of two C4BP-binding sequence patterns (M2 and M22) in the HVR of numerous M proteins, with this conservation applicable to vaccine immunogen design. These two patterns, however, only partially explain C4BP-binding by Strep A. Here, we identified several M proteins that lack these patterns but still bind C4BP, and determined the structures of two, M68 and M87 HVRs, in complex with a C4BP fragment. Mutagenesis of these M proteins led to identification of amino acids that are crucial for C4BP-binding, enabling formulation of new C4BP-binding patterns. Mutagenesis was also carried out on M2 and M22 proteins to refine or generate experimentally grounded C4BP-binding patterns. The M22 pattern was the most populated among M proteins, followed by the M87 and M2 patterns, while the M68 pattern was rare. These patterns, except for M68, were also evident in numerous M-like Enn proteins. Binding of C4BP via these patterns to Enn proteins was verified. We conclude that C4BP-binding patterns occur frequently in Strep A strains of differing M types, being present in their M or Enn proteins, or frequently both, providing further impetus for their use as vaccine immunogens.

17.
J Bacteriol ; 195(20): 4631-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23935040

RESUMO

The type III secretion (T3S) system is essential to the virulence of a large number of Gram-negative bacterial pathogens, including Yersinia. YscO is required for T3S in Yersinia and is known to interact with several other T3S proteins, including the chaperone SycD and the needle length regulator YscP. To define which interactions of YscO are required for T3S, we pursued model-guided mutagenesis: three conserved and surface-exposed regions of modeled YscO were targeted for multiple alanine substitutions. Most of the mutations abrogated T3S and did so in a recessive manner, consistent with a loss of function. Both functional and nonfunctional YscO mutant proteins interacted with SycD, indicating that the mutations had not affected protein stability. Likewise, both functional and nonfunctional versions of YscO were exclusively intrabacterial. Functional and nonfunctional versions of YscO were, however, distinguishable with respect to interaction with YscP. This interaction was observed only for wild-type YscO and a T3S-proficient mutant of YscO but not for the several T3S-deficient mutants of YscO. Evidence is presented that the YscO-YscP interaction is direct and that the type III secretion substrate specificity switch (T3S4) domain of YscP is sufficient for this interaction. These results provide evidence that the interaction of YscO with YscP, and in particular the T3S4 domain of YscP, is essential to type III secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Yersinia/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Yersinia/genética
18.
PLoS Pathog ; 7(3): e1001314, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21408619

RESUMO

Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Genes de Helmintos , Genoma Helmíntico , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , RNA de Helmintos/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Fatores de Virulência/metabolismo
19.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961358

RESUMO

Diversity-generating retroelements (DGRs), which are pervasive among microbes, create massive protein sequence variation through reverse transcription of a protein-coding RNA template coupled to frequent misincorporation at template adenines. For cDNA synthesis, the template must be surrounded by up- and downstream sequences. Cryo-EM revealed that this longer RNA formed an integral ribonucleoprotein (RNP) with the DGR reverse transcriptase bRT and associated protein Avd. The downstream, noncoding (nc) RNA formed stem-loops enveloping bRT and laying over barrel-shaped Avd, and duplexes with the upstream and template RNA. These RNA structural elements were required for reverse transcription, and several were conserved in DGRs from distant taxa. Multiple RNP conformations were visualized, and no large structural rearrangements occurred when adenine replaced guanine as the template base, suggesting energetics govern misincorporation at adenines. Our results explain how the downstream ncRNA primes cDNA synthesis, promotes processivity, terminates polymerization, and stringently limits mutagenesis to DGR variable proteins.

20.
Process Biochem ; 125: 141-153, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36643388

RESUMO

Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/ß subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for ß-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin ß-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA