Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996869

RESUMO

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Assuntos
Alanina/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Triptofano Sintase/química , Catálise , Indóis , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Fosfato de Piridoxal/metabolismo , Triptofano Sintase/metabolismo
2.
Biochemistry ; 60(42): 3173-3186, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34595921

RESUMO

The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and ß-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by ß-site residues proximal to the PLP cofactor have not yet been fully established. ßGln114 is one such residue. To explore the roles played by ßQ114, we conducted a detailed investigation of the ßQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the ß-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and ßQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of ßGln114, ßAsn145, and ßArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (ßT state) and closed (ßR state) conformations of the ß-subunit and consequently alter the distribution of intermediates along the ß-subunit catalytic path.


Assuntos
Proteínas de Bactérias/química , Triptofano Sintase/química , Regulação Alostérica/genética , Proteínas de Bactérias/genética , Biocatálise , Cinética , Mutagênese Sítio-Dirigida , Mutação , Salmonella typhimurium/enzimologia , Triptofano Sintase/genética
3.
J Biomol NMR ; 75(8-9): 303-318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218390

RESUMO

Backbone chemical shift assignments for the Toho-1 ß-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly 2H,13C,15N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-ß-lactam ß-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of 15N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.


Assuntos
Compostos Azabicíclicos , beta-Lactamases , Sítios de Ligação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , beta-Lactamases/metabolismo
4.
Front Mol Biosci ; 9: 923042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172042

RESUMO

The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αßßα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3'-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring ß-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αß dimeric units of the αßßα bienzyme complex, the common intermediate indole is channeled from the α site to the ß site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the ß-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αßßα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and ß-sites. This coupling drives the α- and ß-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and ß-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and ß-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.

5.
Protein Sci ; 31(2): 432-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767267

RESUMO

Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αß interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.


Assuntos
Antibacterianos , Triptofano Sintase , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triptofano Sintase/antagonistas & inibidores , Triptofano Sintase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA