Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38558967

RESUMO

Background: Cardiac dysfunction in AL amyloidosis is thought to be partly related to the direct impact of AL LCs on cardiomyocyte function, with the degree of dysfunction at diagnosis as a major determinant of clinical outcomes. Nonetheless, mechanisms underlying LC-induced myocardial toxicity are not well understood. Methods: We identified gene expression changes correlating with human cardiac cells exposed to a cardiomyopathy-associated κAL LC. We then sought to confirm these findings in a clinical dataset by focusing on clinical parameters associated with the pathways dysregulated at the gene expression level. Results: Upon exposure to a cardiomyopathy-associated κAL LC, cardiac cells exhibited gene expression changes related to myocardial contractile function and inflammation, leading us to hypothesize that there could be clinically detectable changes in GLS on echocardiogram and serum inflammatory markers in patients. Thus, we identified 29 patients with normal IVSd but abnormal cardiac biomarkers suggestive of LC-induced cardiac dysfunction. These patients display early cardiac biomarker staging, abnormal GLS, and significantly reduced serum inflammatory markers compared to patients with clinically evident amyloid fibril deposition. Conclusion: Collectively, our findings highlight early molecular and functional signatures of cardiac AL amyloidosis, with potential impact for developing improved patient biomarkers and novel therapeutics.

2.
Amyloid ; 30(4): 379-393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439769

RESUMO

BACKGROUND: In ATTR amyloidosis, transthyretin (TTR) protein is secreted from the liver and deposited as toxic aggregates at downstream target tissues. Despite recent advancements in treatments for ATTR amyloidosis, the mechanisms underlying misfolded TTR-mediated cellular damage remain elusive. METHODS: In an effort to define early events of TTR-associated stress, we exposed neuronal (SH-SY5Y) and cardiac (AC16) cells to wild-type and destabilized TTR variants (TTRV122I (p.V142I) and TTRL55P (p.L70P)) and performed transcriptional (RNAseq) and epigenetic (ATACseq) profiling. We subsequently compared TTR-responsive signatures to cells exposed to destabilized antibody light chain protein associated with AL amyloidosis as well as ER stressors (thapsigargin, heat shock). RESULTS: In doing so, we observed overlapping, yet distinct cell type- and amyloidogenic protein-specific signatures, suggesting unique responses to each amyloidogenic variant. Moreover, we identified chromatin level changes in AC16 cells exposed to mutant TTR that resolved upon pre-incubation with kinetic stabilizer tafamidis. CONCLUSIONS: Collectively, these data provide insight into the mechanisms underlying destabilized protein-mediated cellular damage and provide a robust resource representing cellular responses to aggregation-prone proteins and ER stress.


Assuntos
Neuropatias Amiloides Familiares , Amiloidose , Neuroblastoma , Humanos , Neuropatias Amiloides Familiares/complicações , Proteínas Amiloidogênicas/genética , Amiloidose/metabolismo , Neuroblastoma/complicações , Neurônios/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo
3.
Stem Cell Reports ; 15(2): 515-528, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735824

RESUMO

The systemic amyloidoses are diverse disorders in which misfolded proteins are secreted by effector organs and deposited as proteotoxic aggregates at downstream tissues. Although well described clinically, the contribution of synthesizing organs to amyloid disease pathogenesis is unknown. Here, we utilize hereditary transthyretin amyloidosis (ATTR amyloidosis) induced pluripotent stem cells (iPSCs) to define the contribution of hepatocyte-like cells (HLCs) to the proteotoxicity of secreted transthyretin (TTR). To this end, we generated isogenic, patient-specific iPSCs expressing either amyloidogenic or wild-type TTR. We combined this tool with single-cell RNA sequencing to identify hepatic proteostasis factors correlating with destabilized TTR production in iPSC-derived HLCs. By generating an ATF6 inducible patient-specific iPSC line, we demonstrated that enhancing hepatic ER proteostasis preferentially reduces the secretion of amyloidogenic TTR. These data highlight the liver's capacity to chaperone misfolded TTR prior to deposition, and moreover suggest the potential for unfolded protein response modulating therapeutics in the treatment of diverse systemic amyloidoses.


Assuntos
Neuropatias Amiloides Familiares/patologia , Amiloide/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Fígado/patologia , Modelos Biológicos , Pré-Albumina/metabolismo , Proteostase , Fator 6 Ativador da Transcrição/metabolismo , Neuropatias Amiloides Familiares/genética , Edição de Genes , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mutação/genética , Pré-Albumina/genética , Regiões Promotoras Genéticas/genética , Estabilidade Proteica , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Estresse Fisiológico , Transferrina/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA