Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mar Drugs ; 21(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103352

RESUMO

Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas , Neoplasias , Humanos , Quitosana/uso terapêutico , Quitina , Sistemas de Liberação de Medicamentos , Biopolímeros , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Nutr Neurosci ; 23(9): 714-723, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30474509

RESUMO

A sub-optimal nutritional environment from early life can be envisaged as a stressor that translates into mental health problems in adulthood. After considering (a) the widespread prevalence of vitamin B12 deficiency especially amongst women in developing countries and (b) the importance of vitamin B12 in normal brain function, in this study we have elucidated the behavioural correlates of chronic severe and moderate vitamin B12 deficiency in C57BL/6 mice. Female weanling mice were assigned to three dietary groups: (a) control AIN-76A diet with cellulose as dietary fibre (b) vitamin B12 restricted AIN-76A diet with pectin as dietary fibre (severe deficiency group) and (c) vitamin B12 restricted AIN-76A diet with cellulose as dietary fibre (moderate deficiency group). The mice received these diets throughout pregnancy, lactation and thereafter. Nest-building, maternal care, anxiety and depressive behaviours were evaluated. Oxidative stress, activities of antioxidant enzymes and expression of various histone modifying enzymes in brain were investigated to unravel the probable underlying mechanisms. Our data suggests that both severe and moderate vitamin B12 deficiency induced anxiety and impaired maternal care. However, only severe vitamin B12 deficiency induced depression. Oxidative stress and poor antioxidant defense underlie the deleterious effects of both severe and moderate vitamin B12 deficiency. Altered expression of histone modifying enzymes in the brain of severely deficient mice is suggestive of epigenetic reprogramming. This study suggests that chronic vitamin B12 deficiency leads to behavioural anomalies in female C57BL/6 mice and the severity of these outcomes can be correlated to the level of deficiency.


Assuntos
Encéfalo/enzimologia , Histona Desacetilases/metabolismo , Estresse Oxidativo , Deficiência de Vitamina B 12/metabolismo , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/etiologia , Depressão/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Comportamento de Nidação/fisiologia , Deficiência de Vitamina B 12/psicologia
5.
Indian J Med Res ; 149(5): 610-615, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31417028

RESUMO

Obesity is one of the leading causes of preventable mortalities in many parts of the globe. The rise in geriatric population due to better treatment opportunities has also emerged as a major public health challenge. Both of these health challenges have impacted developed as well as developing countries. Obesity is attributed as a powerful risk factor of a variety of health problems such as cardiovascular diseases, hypertension, type 2 diabetes, dementia, neuropsychiatric diseases and many more. On the other hand, ageing is a natural process involving a gradual decline in physiological functions and is associated with similar co-morbidities as obesity. This review discusses about the commonalities (termed as 'Obesageing') between the pathological phenomenon of obesity and normal physiological process of ageing. A unique rodent model of obesageing has been developed (WNIN/Ob) that has characteristics of morbid obesity as well as premature ageing. Such a novel animal model would facilitate the understanding of the complex interplay of different mechanisms that are common to obesity and ageing and help to devise strategies in future to tackle the growing burden of obesity and ageing.


Assuntos
Envelhecimento/patologia , Doenças Cardiovasculares/epidemiologia , Hipertensão/epidemiologia , Obesidade/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Demência/complicações , Demência/epidemiologia , Demência/patologia , Diabetes Mellitus Tipo 2/complicações , Feminino , Avaliação Geriátrica , Humanos , Hipertensão/complicações , Hipertensão/patologia , Masculino , Obesidade/complicações , Obesidade/patologia , Fatores de Risco
6.
J Neurochem ; 142(6): 790-811, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28632905

RESUMO

One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.

7.
IUBMB Life ; 68(9): 717-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364681

RESUMO

DNA damage caused by various sources remains one of the most researched topics in the area of aging and neurodegeneration. Increased DNA damage causes premature aging. Aging is plastic and is characterised by the decline in the ability of a cell/organism to maintain genomic stability. Lifespan can be modulated by various interventions like calorie restriction, a balanced diet of macro and micronutrients or supplementation with nutrients/nutrient formulations such as Amalaki rasayana, docosahexaenoic acid, resveratrol, curcumin, etc. Increased levels of DNA damage in the form of double stranded and single stranded breaks are associated with decreased longevity in animal models like WNIN/Ob obese rats. Erroneous DNA repair can result in accumulation of DNA damage products, which in turn result in premature aging disorders such as Hutchinson-Gilford progeria syndrome. Epigenomic studies of the aging process have opened a completely new arena for research and development of drugs and therapeutic agents. We propose here that agents or interventions that can maintain epigenomic stability and facilitate the DNA repair process can slow down the progress of premature aging, if not completely prevent it. © 2016 IUBMB Life, 68(9):717-721, 2016.


Assuntos
Envelhecimento/genética , Dano ao DNA/genética , Epigênese Genética/genética , Progéria/dietoterapia , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Curcumina/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Instabilidade Genômica/efeitos dos fármacos , Humanos , Longevidade/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Progéria/fisiopatologia , Ratos , Resveratrol , Estilbenos/uso terapêutico
9.
J Carcinog ; 13: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737950

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a multistep complex process, caused by many of genetic alteration. Insulin-like growth factors and their receptor have been widely implicated to HCC. Insulin-like growth factor-II (IGF-II) is a mitogenic polypeptide, found in various fetal and neonatal tissues of humans and rats and expresses in HCC. Here we investigated anticancer potential of phosphorothioate antisense oligonucleotides (ASOs) against three coding exons (exon-1/exon-2/exon-3) of IGF-II messenger ribonucleic acid in rat hepatocarcinogenesis model. MATERIALS AND METHODS: During diethylnitrosamine and 2-acetylaminofluorene induced hepatocarcinogenesis, rats were treated with ASOs. Various biochemical and histological studies were conducted. RESULTS: About 40% of carcinogen treated rats, which received two oligomers (against exon-1 or-3) did not show any hepatic lesion, hyperplastic nodule or tumor and remaining 60% of those rats showed lesion incidence and had about 59% and 55% reductions in the numbers of hepatic altered foci, respectively. Reductions in the total lesion-area when compared with carcinogen control rats were 64% and 53%, respectively for the animals treated with carcinogen and received the ASOs against exon-1/-3. Fluorescein isothiocyanate-labeled ASO reached in the hepatocytes in 2 h. No predominant IGF-II overexpression was observed in case of rats treated with the two ASOs. Treatment of the antisense IGF-II oligomers in carcinogen treated rats show better hepatocellular integrity along with several preneoplastic/neoplastic marker isoenzyme/enzyme modulations. CONCLUSIONS: Two of the three antisense oligomer-types effectively controlled IGF-II overexpression, causing the delay of the development and/or progress of hepatic cancer in rats.

10.
Indian J Med Res ; 139(5): 667-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25027075

RESUMO

Progeria is characterized by clinical features that mimic premature ageing. Although the mutation responsible for this syndrome has been deciphered, the mechanism of its action remains elusive. Progeria research has gained momentum particularly in the last two decades because of the possibility of revealing evidences about the ageing process in normal and other pathophysiological conditions. Various experimental models, both in vivo and in vitro, have been developed in an effort to understand the cellular and molecular basis of a number of clinically heterogeneous rare genetic disorders that come under the umbrella of progeroid syndromes (PSs). As per the latest clinical trial reports, Lonafarnib, a farnesyltranferase inhibitor, is a potent 'drug of hope' for Hutchinson-Gilford progeria syndrome (HGPS) and has been successful in facilitating weight gain and improving cardiovascular and skeletal pathologies in progeroid children. This can be considered as the dawn of a new era in progeria research and thus, an apt time to review the research developments in this area highlighting the molecular aspects, experimental models, promising drugs in trial and their implications to gain a better understanding of PSs.


Assuntos
Envelhecimento/patologia , Lamina Tipo A/genética , Progéria/patologia , Doenças Raras/patologia , Envelhecimento/genética , Criança , Ensaios Clínicos como Assunto , Humanos , Longevidade/genética , Mutação , Piperidinas/uso terapêutico , Prenilação , Progéria/genética , Piridinas/uso terapêutico , Doenças Raras/genética
11.
Cureus ; 16(5): e59941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854254

RESUMO

This editorial discusses the difficulties encountered in the management of cancer among the geriatric population. Although cancer research has made substantial advancements, treatments frequently fail to consider the long-lasting consequences and adverse effects on elderly people. We advocate for enhanced geriatric oncology care, embodying enhanced evaluation techniques, the incorporation of complementary therapies, and the utilisation of wearable technologies for remote surveillance. Additionally, we suggest modifying future clinical trials to take into account the cognitive well-being of senior individuals. Implementing these modifications would greatly enhance cancer treatment for geriatric cancer patients.

12.
Int J Biol Macromol ; 254(Pt 1): 127708, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923043

RESUMO

Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.


Assuntos
Hidrogéis , Doenças do Sistema Nervoso , Humanos , Hidrogéis/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Sistema Nervoso Central/metabolismo
13.
Ageing Res Rev ; 96: 102211, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38307424

RESUMO

Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.


Assuntos
Doença de Alzheimer , Alucinógenos , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Dietilamida do Ácido Lisérgico/farmacologia , Dietilamida do Ácido Lisérgico/uso terapêutico , Psilocibina/farmacologia , Psilocibina/uso terapêutico , N,N-Dimetiltriptamina
14.
J Alzheimers Dis ; 98(4): 1169-1179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607755

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of neurofibrillary tangles and amyloid-ß plaques. Recent research has unveiled the pivotal role of insulin signaling dysfunction in the pathogenesis of AD. Insulin, once thought to be unrelated to brain function, has emerged as a crucial factor in neuronal survival, synaptic plasticity, and cognitive processes. Insulin and the downstream insulin signaling molecules are found mainly in the hippocampus and cortex. Some molecules responsible for dysfunction in insulin signaling are GSK-3ß, Akt, PI3K, and IRS. Irregularities in insulin signaling or insulin resistance may arise from changes in the phosphorylation levels of key molecules, which can be influenced by both stimulation and inactivity. This, in turn, is believed to be a crucial factor contributing to the development of AD, which is characterized by oxidative stress, neuroinflammation, and other pathological hallmarks. Furthermore, this route is known to be indirectly influenced by Nrf2, NF-κB, and the caspases. This mini-review delves into the intricate relationship between insulin signaling and AD, exploring how disruptions in this pathway contribute to disease progression. Moreover, we examine recent advances in drug delivery systems designed to target insulin signaling for AD treatment. From oral insulin delivery to innovative nanoparticle approaches and intranasal administration, these strategies hold promise in mitigating the impact of insulin resistance on AD. This review consolidates current knowledge to shed light on the potential of these interventions as targeted therapeutic options for AD.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Humanos , Doença de Alzheimer/patologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Glicogênio Sintase Quinase 3 beta , Peptídeos beta-Amiloides/metabolismo , Sistemas de Liberação de Medicamentos
15.
Proc Biol Sci ; 280(1760): 20130174, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23595269

RESUMO

Most ectotherms show an inverse relationship between developmental temperature and body size, a phenomenon known as the temperature-size rule (TSR). Several competing hypotheses have been proposed to explain its occurrence. According to one set of views, the TSR results from inevitable biophysical effects of temperature on the rates of growth and differentiation, whereas other views suggest the TSR is an adaptation that can be achieved by a diversity of mechanisms in different taxa. Our data reveal that the fruitfly, Drosophila melanogaster, obeys the TSR using a novel mechanism: reduction in critical size at higher temperatures. In holometabolous insects, attainment of critical size initiates the hormonal cascade that terminates growth, and hence, Drosophila larvae appear to instigate the signal to stop growth at a smaller size at higher temperatures. This is in contrast to findings from another holometabolous insect, Manduca sexta, in which the TSR results from the effect of temperature on the rate and duration of growth. This contrast suggests that there is no single mechanism that accounts for the TSR. Instead, the TSR appears to be an adaptation that is achieved at a proximate level through different mechanisms in different taxa.


Assuntos
Adaptação Biológica/fisiologia , Tamanho Corporal/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Modelos Biológicos , Temperatura , Análise de Variância , Animais , Pesos e Medidas Corporais , Modelos Logísticos , Manduca/crescimento & desenvolvimento , Especificidade da Espécie
16.
J Exp Biol ; 216(Pt 23): 4334-40, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24259256

RESUMO

Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca sexta and Drosophila melanogaster, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis is initiated when larvae attain a critical mass. We hypothesized that oxygen effects on final size might be mediated by oxygen effects on the critical weight and the ecdysone titers, which regulate growth rate and the timing of developmental transitions. Our results showed that oxygen affected critical weight, the basal ecdysone titers and the timing of the ecdysone peak, providing clear evidence that oxygen affected growth rate and developmental rate. Hypoxic third instar larvae (10% oxygen) exhibited a reduced critical weight, slower growth rate, delayed pupariation, elevated baseline ecdysone levels and a delayed ecdysone peak that occurred at a lower larval mass. Hyperoxic larvae exhibited increased basal ecdysone levels, but no change in critical weight compared with normoxic larvae and no significant change in timing of pupariation. Previous studies have shown that nutrition is crucial for regulating growth rate and the timing of developmental transitions. Here we show that oxygen level is one of multiple cues that together regulate adult size and the timing and dynamics of growth, developmental rate and ecdysone signaling.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , Oxigênio/fisiologia , Animais , Tamanho Corporal , Drosophila melanogaster/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia
17.
Cureus ; 15(12): e50668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229812

RESUMO

The weaknesses of healthcare systems have been sharply revealed amid the instability of the COVID-19 pandemic and the ongoing conflicts across the borders of different countries. One thing unites these two crises that appear to be separate: the incapacity of healthcare systems to provide for the most basic human requirements in emergency situations. With an emphasis on the roles of the United Nations and the World Health Organisation, we look into the similarities between healthcare failures in COVID-19 and conflict zones in this Editorial and offer possible solutions to improve the circumstances.

18.
Curr Top Med Chem ; 23(2): 128-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796445

RESUMO

Coronavirus disease (COVID-19) is the greatest pandemic of this era and has affected more than 10 million people across 213 nations. However, the etiology, management, and treatment of COVID-19 remain unknown. A better understanding of the novel virus would help in developing accurate diagnostic methods and efficacious drugs for the treatment of patients of all age groups. To control the pandemic urgently, many drugs are being repurposed and several clinical trials are in progress for the same. As cytokine storm has been observed to be one of the common mechanisms of immune response in COVID-19 patients, several drugs are under trials to control the cytokine storm. In this review, we discuss the different categories of drugs in clinical trials for the management of cytokine storms in COVID-19 patients. Hitherto, several promising candidates such as IL-1 and IL-6 inhibitors have failed to display efficacy in the trials. Only corticosteroid therapy has shown benefit so far, albeit limited to patients on ventilator support. Thus, it is crucial to seek novel strategies to combat hyperinflammation and increase survival in COVID-19 afflicted patients.


Assuntos
COVID-19 , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , SARS-CoV-2 , Citocinas , Pandemias
19.
Ibrain ; 9(1): 90-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786516

RESUMO

Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are the most common causes of emotional distress that impair an individual's quality of life. MDD is a chronic mental illness that affects 300 million people across the world. Clinical manifestations of MDD include fatigue, loss of interest in routine tasks, psychomotor agitation, impaired ability to focus, suicidal ideation, hypersomnolence, altered psychosocial functioning, and appetite loss. Individuals with depression also demonstrate a reduced behavioral response while experiencing pleasure, a symptom known as anhedonia. Like MDD, PTSD is a prevalent and debilitating psychiatric disorder resulting from a traumatic incident such as sexual assault, war, severe accident, or natural disaster. Symptoms such as recalling event phases, hypervigilance, irritability, and anhedonia are common in PTSD. Both MDD and PTSD pose enormous socioeconomic burdens across the globe. The search for effective treatment with minimal side effects is still ongoing. Ketamine is known for its anesthetic and analgesic properties. Psychedelic and psychotropic effects of ketamine have been found on the nervous system, which highlights its toxicity. In this article, the effectiveness of ketamine as a potential therapeutic for PTSD and MDD along with its mechanisms of action, clinical trials, and possible side effects have been discussed.

20.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37643058

RESUMO

Sleep is a fundamental process essential for reparatory and restorative mechanisms in all organisms. Recent research has linked sleep to various pathological conditions, including cancer and neurodegeneration, which are associated with various molecular changes in different cellular environments. Despite the potential significance of various molecules, the HSPA1A or Hsp70 protein, which has possible connections with sleep and different neuropsychological and pathological disorders, has been explored the least. This paper explores the potential for manipulating and discovering drugs related to the Hsp70 protein to alleviate sleep problems and improve the prognosis for various other health issues. This paper discusses the critical role of Hsp70 in cancer, neurodegeneration, apoptosis, sleep, and its regulation at the structural level through allosteric mechanisms and different substrates. The significant impact of Hsp70's connection to various conditions suggests that existing sleep medicine could be used to improve such conditions, leading to improved outcomes, minimized research costs, and a new direction for current research. Overall, this paper highlights the potential of Hsp70 protein as a key therapeutic target for developing new drugs for the treatment of sleep disorders, cancer, neurodegeneration, and other related pathological conditions. Further research into the molecular mechanisms of Hsp70 regulation and its interactions with other cellular pathways is necessary to develop targeted treatments for these conditions.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA