Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Angew Chem Int Ed Engl ; 63(2): e202310112, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37997014

RESUMO

The significance of stereoselective C-H bond functionalization thrives on its direct application potential to pharmaceuticals or complex chiral molecule synthesis. Complication arises when there are multiple stereogenic elements such as a center and an axis of chirality to control. Over the years cooperative assistance of multiple chiral ligands has been applied to control only chiral centers. In this work, we harness the essence of cooperative ligand approach to control two different stereogenic elements in the same molecule by atroposelective allylation to synthesize axially chiral biaryls from its racemic precursor. The crucial roles played by chiral phosphoric acid and chiral amino acid ligand in concert helped us to obtain one major stereoisomer out of four distinct possibilities.

2.
J Am Chem Soc ; 145(5): 2884-2900, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695526

RESUMO

The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.

3.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138576

RESUMO

Canola is the second-largest cultivated oilseed crop in the world and produces meal consisting of about 35-40% proteins. Despite this, less than 1% of the global plant-based protein market is taken up by canola protein. The reason behind such underutilization of canola protein and its rapeseed counterpart could be the harsh conditions of the industrial oil extraction process, the dark colour of the meal, the presence of various antinutrients, the variability in the protein composition based on the source, and the different properties of the two major protein components. Although academic research has shown immense potential for the use of canola protein and its rapeseed counterpart in emulsion development and stabilization, there is still a vast knowledge gap in efficiently utilizing canola proteins as an effective emulsifier in the development of various emulsion-based foods and beverages. In this context, this review paper summarizes the last 15 years of research on canola and rapeseed proteins as food emulsifiers. It discusses the protein extraction methods, modifications made to improve emulsification, emulsion composition, preparation protocols, and emulsion stability results. The need for further improvement in the scope of the research and reducing the knowledge gap is also highlighted, which could be useful for the food industry to rationally select canola proteins and optimize the processing parameters to obtain products with desirable attributes.


Assuntos
Brassica napus , Brassica rapa , Emulsões , Emulsificantes , Alimentos , Proteínas de Plantas
4.
J Exp Bot ; 73(11): 3807-3822, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35298622

RESUMO

De-methyl esterification of homogalacturonan and subsequent cross-linking with Ca2+ is hypothesized to enhance the freezing survival of cold acclimated plants by reducing the porosity of primary cell walls. To test this theory, we collected leaf epidermal peels from non- (23/18 °C) and cold acclimated (2 weeks at 12/4 °C) Japanese bunching onion (Allium fistulosum L.). Cold acclimation enhanced the temperature at which half the cells survived freezing injury by 8 °C (LT50 =-20 °C), and reduced tissue permeability by 70-fold compared with non-acclimated epidermal cells. These effects were associated with greater activity of pectin methylesterase (PME) and a reduction in the methyl esterification of homogalacturonan. Non-acclimated plants treated with 50 mM CaCl2 accumulated higher concentrations of galacturonic acid, Ca2+ in the cell wall, and a lower number of visible cell wall pores compared with that observed in cold acclimated plants. Using cryo-microscopy, we observed that 50 mM CaCl2 treatment did not lower the LT50 of non-acclimated cells, but reduced the lethal intracellular ice nucleation to temperatures observed in cold acclimated epidermal cells. We postulate that the PME-homogalacturonan-mediated reduction in cell wall porosity is integral to intracellular freezing avoidance strategies in cold acclimated herbaceous cells.


Assuntos
Allium , Cálcio , Aclimatação , Cloreto de Cálcio , Parede Celular , Temperatura Baixa , Congelamento , Pectinas , Plantas , Temperatura
5.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630671

RESUMO

Lentil protein isolate (LPI)-κ-carrageenan (κ-C) and -ι-carrageenan (ι-C) based microcapsules were prepared through spray-drying and freeze-drying to encapsulate flaxseed oil in order to reach final oil levels of 20% and 30%. Characteristics of the corresponding emulsions and their dried microcapsules were determined. For emulsion properties, all LPI-κ-C and LPI-ι-C emulsions remained 100% stable after 48 h, while the LPI emulsions destabilized quickly (p < 0.05) after homogenization mainly due to low emulsion viscosity. For spray-dried microcapsules, the highest yield was attributed to LPI-ι-C with 20% oil, followed by LPI-κ-C 20% and LPI-ι-C 30% (p < 0.05). Flaxseed oil was oxidized more significantly among the spray-dried capsules compared to untreated oil (p < 0.05) due to the effect of heat. Flaxseed oil was more stable in all the freeze-dried capsules and showed significantly lower oil oxidation than the untreated oil after 8 weeks of storage (p < 0.05). As for in vitro oil release profile, a higher amount of oil was released for LPI-κ-C powders under simulated gastric fluid (SGF), while more oil was released for LPI-ι-C powders under simulated gastric fluid and simulated intestinal fluid (SGF + SIF) regardless of drying method and oil content. This study enhanced the emulsion stability by applying carrageenan to LPI and showed the potential to make plant-based microcapsules to deliver omega-3 oils.


Assuntos
Ácidos Graxos Ômega-3 , Lens (Planta) , Cápsulas , Carragenina , Emulsões , Liofilização , Óleo de Semente do Linho , Tamanho da Partícula , Pós
6.
Langmuir ; 35(52): 17061-17074, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31747517

RESUMO

Viscous, flowable nanoemulsions stabilized with ionic emulsifier can be transformed into repulsively jammed elastic gels that do not flow under gravity by reducing the droplet size and increasing the interfacial repulsive shell layer thickness. However, a high concentration of emulsifier required to achieve nanodroplets could remain in the continuous phase and lead to oscillatory structural forces, thereby reducing repulsive interaction and forming flowable liquid systems. It was hypothesized that the removal of excess emulsifier from a nanoemulsion could lead to the formation of repulsive gels. Canola oil-in-water nanoemulsions, containing 40 wt % oil, were prepared with a citric acid ester of monoglyceride (Citrem) using a high-pressure homogenizer. The excess emulsifier in the aqueous phase was removed by multiple ultracentrifugation cycles, and the droplet size, rheology, and stability of the nanoemulsions were investigated as a function of excess Citrem concentration. Nanoemulsions with average droplet sizes of 222 and 150 nm were obtained with 3 and 5 wt % Citrem, respectively. The removal of excess Citrem did not change the droplet size significantly. However, the viscosity, yield stress, and storage moduli increased significantly with the reduction of excess Citrem and the decrease in droplet size, converting the flowable weak gel nanoemulsion to a strong viscoelastic gel. The calculated values of oscillatory structural forces decreased with the removal of excess emulsifier, leading to an increase in repulsive interactions and the thickness of the electric double layer. Such an increase in interdroplet separation led to an increase in the effective oil volume fraction beyond the maximum random jamming of oil droplets and the formation of a viscoelastic nanoemulsion gel.

7.
Soft Matter ; 15(47): 9762-9775, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31742298

RESUMO

Rheology of sodium caseinate (SC) and whey protein isolate (WPI)-stabilized nanoemulsions (NEs) was investigated as a function of protein (1-5 wt%) and oil (30 and 40 wt%) concentration and storage time. For SC NEs, gel strength increased with an increase in protein and oil concentration and a decrease in droplet size and below a critical size transformed into a strong elastic gel that did not flow under gravity. Surprisingly, WPI NEs, although stable and had similar droplet size to SC NEs, did not form elastic gels. The stability of the NEs was studied for 3 months, and no significant change was observed. Considerable higher storage modulus (G') of SC NEs compared to WPI NEs was attributed to an increased effective droplet volume fraction (φeff) due to a thicker steric barrier of SC compared to WPI. The DLVO interdroplet potential was used to calculate the thickness of the charge cloud at an overall repulsive interaction of 1 kBT, which was added to the steric barrier to calculate the effective droplet size and φeff. At the highest φeff (0.79) for 5% SC NEs with 40% oil, the nanodroplets and associated repulsive barrier randomly jammed, leading to the formation of a strong elastic gel. For WPI NEs, maximum φeff was 0.57, leading to a lack of jamming and viscous fluid-like behaviour. Re-plotting G' with φeff for SC NEs with different protein concentration showed a linear trend followed by a rapid increase in G' at a critical φeff, confirming the transition from weak glassy region to strong randomly jammed structure. SC-stabilized repulsively jammed NE-gels could be used as a novel soft material where a lower oil volume fraction and long-term stability is required.


Assuntos
Caseínas/química , Nanoestruturas/química , Óleo de Brassica napus/química , Proteínas do Soro do Leite/química , Elasticidade , Emulsões , Viscosidade
8.
Biochim Biophys Acta Gen Subj ; 1862(3): 485-494, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29107813

RESUMO

We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two É£ H of curcumin heptadiene chain are closely positioned to the A16-H8 and A17-H8, while G12-H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Curcumina/farmacologia , DNA/efeitos dos fármacos , Floxuridina/farmacologia , Anticarcinógenos/química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dicroísmo Circular , Curcumina/química , Sinergismo Farmacológico , Floxuridina/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
9.
J Food Sci Technol ; 54(1): 82-92, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28242906

RESUMO

Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size <200 nm, which remained unchanged over 6 months. However, all of them displayed rapid creaming due to unabsorbed protein induced depletion flocculation, whose extent increased with protein concentration, although the cream layer formed was weak and re-dispersible upon gentle mixing. Microstructural analysis of the cream layer showed compaction of flocculated nanodroplet network with time leaving the aqueous phase out. Calculation of depletion interaction energy showed an increase in inter-droplet attraction with protein concentration and decrease with a reduction in droplet size, making the nanoemulsions more resistant to flocculation than conventional emulsions. This work aids in understanding the dependence of protein concentration on long-term stability of sodium caseinate-stabilized nanoemulsions.

10.
Langmuir ; 30(37): 11062-74, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25137632

RESUMO

Nanoemulsion gels are a new class of soft materials that manifest stronger elasticity even at lower dispersed phase volume fraction. In this work, gelation in 40 wt % canola oil-in-water nanoemulsions was investigated as a function of emulsifier type (anionic sodium dodecyl sulfate (SDS) or nonionic Tween 20) and concentration. It was observed that the liquid nanoemulsions transformed into viscoelastic gels at a specific concentration range of SDS, whereas no gelation was observed for Tween 20. The apparent viscosity, yield stress, and storage modulus of the nanogels increased with SDS concentration until 15 times critical micelle concentration (CMC), thereafter decreased steadily as the gelation weakened beginning 20 CMC. Three regimes of colloidal interactions in the presence of emulsifier were proposed. (1) Repulsive gelation: at low SDS concentration (0.5-2 times CMC) the repulsive charge cloud around the nanodroplets acted as interfacial shell layer that significantly increased the effective volume fraction of the dispersed phase (ϕ(eff)). When ϕ(eff) became comparable to the volume fraction required for maximal random jamming, nanoemulsions formed elastic gels. (2) Attractive gelation: as the SDS concentration increased to 5-15 times CMC, ϕ(eff) dropped due to charge screening by more counterions from SDS, but depletion attractions generated by micelles in the continuous phase led to extensive droplet aggregation which immobilized the continuous phase leading to stronger gel formation. (3) Decline in gelation due to oscillatory structural forces (OSF): at very high SDS concentration (20-30 time CMC), structural forces were manifested due to the layered-structuring of excess micelles in the interdroplet regions resulting in loss of droplet aggregation. Tween 20 nanoemulsions, on the other hand, did not show repulsive gelation due to lack of charge cloud, while weak depletion attraction and early commencement of OSF regime leading to liquid-like behavior at all concentrations. The nanogels possess great potential for use in low-fat foods, pharmaceuticals and cosmetic products.


Assuntos
Nanoestruturas/química , Polissorbatos/química , Dodecilsulfato de Sódio/química , Emulsões/química , Ácidos Graxos Monoinsaturados/química , Géis/química , Tamanho da Partícula , Óleo de Brassica napus , Propriedades de Superfície , Água/química
11.
Nanomedicine ; 10(2): 451-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23988714

RESUMO

DNA and porphyrin based therapeutics are important for anti-cancer treatment. The present studies demonstrate single-stranded DNA (ssDNA) assembles with meso-tetra-4-pyridyl porphine (MTP) forming porphyrin:DNA nano-complexes (PDN) that are stable in aqueous solution under physiologically relevant conditions and undergo dissociation with DNA release in hydrophobic environments, including cell membranes. PDN formation is DNA-dependent with the ratio of porphyrin:DNA being approximately two DNA nucleobases per porphyrin. PDN produce reactive oxygen species (ROS) in a light-dependent manner under conditions that favor nano-complex dissociation in the presence of hydrophobic solvents. PDN induce light-dependent cytotoxicity in vitro and anti-tumor activity towards bladder cancer xenografts in vivo. Light-dependent, PDN-mediated cell death results from ROS-mediated localized membrane damage due to lipid peroxidation with mass spectrometry indicating the generation of the lipid peroxidation products 9- and 13-hydroxy octadecanoic acid. Our results demonstrate that PDN have properties useful for therapeutic applications, including cancer treatment. FROM THE CLINICAL EDITOR: In this study, porphyrin-DNA nanocomplexes were investigated as anti-cancer therapeutics inducing ROS production in a light-dependent manner. Efficacy is demonstrated in vitro as well as a in a bladder cancer xenograft model.


Assuntos
Antineoplásicos/química , DNA de Cadeia Simples/química , Neoplasias/tratamento farmacológico , Porfirinas/química , Animais , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peroxidação de Lipídeos , Camundongos , Camundongos Nus , Nanomedicina , Transplante de Neoplasias , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Ácidos Esteáricos/química , Neoplasias da Bexiga Urinária/terapia
12.
Nucleic Acids Res ; 39(10): 4490-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21296761

RESUMO

We report, based on semi-empirical calculations, that Zn(2+) binds duplex DNA containing consecutive FdU-dA base pairs in the major groove with distorted trigonal bipyramidal geometry. In this previously uncharacterized binding motif, O4 and F5 on consecutive FdU are axial ligands while three water molecules complete the coordination sphere. NMR spectroscopy confirmed Zn(2+) complexation occurred with maintenance of base pairing while a slight hypsochromic shift in circular dichroism (CD) spectra indicated moderate structural distortion relative to B-form DNA. Zn(2+) complexation inhibited ethidium bromide (EtBr) intercalation and stabilized FdU-substituted duplex DNA (ΔT(m) > 15 °C). Mg(2+) neither inhibited EtBr complexation nor had as strong of a stabilizing effect. DNA sequences that did not contain consecutive FdU were not stabilized by Zn(2+). A lipofectamine preparation of the Zn(2+)-DNA complex displayed enhanced cytotoxicity toward prostate cancer cells relative to the individual components prepared as lipofectamine complexes indicating the potential utility of Zn(2+)-DNA complexes for cancer treatment.


Assuntos
DNA/química , Floxuridina/química , Zinco/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Dicroísmo Circular , DNA/toxicidade , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Zinco/toxicidade
13.
Food Funct ; 13(5): 2515-2533, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35147626

RESUMO

This research aimed to induce repulsive gelation in Citrem-stabilized O/W emulsions by creating a secondary layer of chitosan around the droplets. A range of chitosan concentrations (0-0.25 wt%) and degrees of deacetylation (DDA 50% and 93%) were used to establish the conditions for repulsive gelation in 36 wt% O/W emulsion. The bilayer emulsions were prepared by the electrostatic deposition of positively charged chitosan on negatively charged Citrem-stabilized droplets at pH 4. The droplet size increased from <0.5 µm for the primary emulsion to 5-10 µm at an intermediate chitosan concentration (0.05-0.15 wt%) due to bridging flocculation and again dropped to 1.7-3.6 µm at higher concentrations (0.2 and 0.25 wt%). The droplet charge changed from -48 mV for the primary emulsion to +41.4 and +54.5 mV after surface saturation by DDA 50 and DDA 93 chitosan, respectively. The strain and frequency-dependent rheology indicated that with an increase in the chitosan concentration, emulsions changed from a viscoelastic liquid for monolayer emulsions to strong attractive gel due to bridging flocculation at an intermediate chitosan concentration. At a higher concentration, repulsive gels were formed at complete coverage due to an increase in the effective oil volume fraction towards close packing resulting from the expansion of the interfacial steric barrier and charge cloud thickness. The overall lipid digestibility during in vitro digestion was 25.7% for monolayer emulsions, which decreased with increased chitosan concentration and reached the lowest at surface saturation (17.5%). It was proposed that the formation of the Citrem-chitosan bilayer controlled lipid digestibility by delaying the action of gastric and pancreatic lipases. Such bilayer emulsion gels can be utilized for structure formation in reduced-fat foods.


Assuntos
Quitosana/metabolismo , Digestão/efeitos dos fármacos , Emulsões/metabolismo , Quitosana/química , Emulsões/química , Géis , Humanos , Tamanho da Partícula
14.
Pathol Res Pract ; 232: 153827, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35276608

RESUMO

PURPOSE: The study was aimed to understand the importance of the hedgehog signaling pathway in development of head and neck squamous cell carcinoma (HNSCC). METHODS: The molecular profiles of the key regulatory genes of the pathway were analysed in the adjacent normal epithelium and tumor samples. The findings were validated in HNSCC cell line. RESULTS: In the bioinformatical analysis, severe reduction in the expression of HHIP was evident in the datasets. The protein and mRNA expression studies in our sample pool revealed interplay of various isoforms of PTCH1 gene (PTCH1-1 and 1B) together with high/medium expression of GLI, SHH, SMO and HHIP in the basal/parabasal layers of the normal epithelium. As the disease progressed, severe downregulation of HHIP coupled with upregulation of GLI1 and differential expression pattern of various PTCH1 gene isoform was evident. Promoter methylation analysis of PTCH1 gene revealed the involvement of more than one promoter of PTCH1 in regulating the expression of different isoform of this gene during tumorigenesis. Treating the FaDu cell line with the demethylating agent 5-aza-2'-deoxycytidine reversed the methylation effects of HHIP and PTCH1 and de-activated the pathway. Also, reduced expression of HHIP-AS1 was observed in our sample pool suggesting multiple ways of regulation of the HHIP gene. Lastly, the patients with under expression of HHIP, HHIP-AS1, high expression of GLI1 showed worse five-year over-all survival trend. CONCLUSION: Dynamic promoter switching of PTCH1 and frequent inactivation of HHIP are the key regulatory events of hedgehog pathway activation in HNSCC.


Assuntos
Proteínas de Transporte , Neoplasias de Cabeça e Pescoço , Glicoproteínas de Membrana , Receptor Patched-1 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas de Transporte/genética , Regulação para Baixo , Neoplasias de Cabeça e Pescoço/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Receptor Patched-1/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
15.
Food Chem ; 367: 130603, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375889

RESUMO

Lentil protein isolate (LPI) was conjugated with plant polyphenols (quercetin, rutin, ellagic acid), and the structural and functional characteristics of the conjugates were determined in comparison with the proteins and pure polyphenols. The interaction between polyphenols and protein was achieved by a grafting method at pH 9.0 in the presence of atmospheric oxygen. Surface plasmon resonance measurements showed polyphenols' direct interaction with LPI, with the order of binding strength quercetin > ellagic acid > rutin. The degree of conjugation also followed the same order. Structural analysis of the conjugates was performed using FTIR, intrinsic fluorescence, and surface hydrophobicity. A significant improvement in DPPH radical scavenging and ferric reducing antioxidant power of the conjugates was observed compared to the polyphenols. However, there was a decrease in the surface activity of the conjugates compared to LPI. Such conjugation provides a novel way to combine the advantages of using plant protein and polyphenols in developing a novel food ingredient.


Assuntos
Lens (Planta) , Polifenóis , Alérgenos , Antioxidantes , Extratos Vegetais , Quercetina
16.
Cureus ; 14(7): e27471, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36060364

RESUMO

SARS coronavirus2 is the primary cause of new Coronavirus illness (COVID-19) (SARS- COV-2). Today, COVID-19 is a global epidemic. Coronavirus illness may be diagnosed using a variety of approaches. The gold standard is RT-PCR, which is used in all of these assays. Swabs from the nose, pharynx, or mouth are the most often used sampling methods for coronavirus detection. For COVID-19 testing, saliva may be utilized as an alternate sample. When compared to a nasopharyngeal swab, saliva samples have a number of advantages and disadvantages. Saliva has also been reviewed as a non-invasive diagnostic tool for the detection of COVID-19. The affordability of the salivary diagnostic process makes it an effective process for detecting the COVID-19 viruses. The researchers have found that salivary diagnostic processes have greater chances of success than other processes of Coronavirus detection. However, healthcare professionals need to make positive changes to their working processes to ensure the sustainability of the salivary diagnosis processes.

17.
Foods ; 11(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36141019

RESUMO

The food industry has long been searching for an efficient replacement for saturated-fatty-acid-rich fats for baking applications. Although oleogels have been considered a potential alternative for saturated and trans fats, their success in food application has been poor. The present study explored the use of oleofoams obtained by whipping the pulse protein foam-templated oleogels for cake baking. Oleogels were prepared at room temperature by adding canola oil containing high-melting monoglyceride (MAG) or candelilla wax (CW) to the freeze-dried pea or faba bean protein-stabilized foams. Oleogels were then whipped to create the oleofoams; however, only the oleogels containing MAG could form oleofoams. CW-oleogel could not form any oleofoam. The most stable oleofoams with the highest overrun, stability, and storage modulus were obtained from 3% MAG+pulse protein foam-templated oleogels. The MAG plus protein foam-templated oleogels showed smaller and more packed air bubbles than MAG-only oleofoam, which was ascribed to the protein's ability to stabilize air bubbles and provide a network in the continuous oil phase to restrict air bubble movement. A novel batter preparation method for oleofoam was developed to increase air bubble incorporation. The X-ray microtomography images of the cakes showed a non-homogeneous distribution of larger air bubbles in the oleofoam cake compared to the shortening cake although their total porosity was not much different. The oleofoam cakes made with the new method yielded similar hardness and chewiness compared to the shortening cakes. By improving rheology and increasing air incorporation in the batter, high-quality cakes can be obtained with MAG-containing oleofoams made from pulse protein foam-templated oleogels.

18.
Plants (Basel) ; 11(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161367

RESUMO

Cell wall structural modifications through pectin cross-linkages between calcium ions and/or boric acid may be key to mitigating dehydration stress and fungal pathogens. Water loss was profiled in a pure pectin system and in vivo. While calcium and boron reduced water loss in pure pectin standards, the impact on Allium species was insignificant (p > 0.05). Nevertheless, synchrotron X-ray microscopy showed the localization of exogenously applied calcium to the apoplast in the epidermal cells of Allium fistulosum. Exogenous calcium application increased viscosity and resistance to shear force in Allium fistulosum, suggesting the formation of calcium cross-linkages ("egg-box" structures). Moreover, Allium fistulosum (freezing tolerant) was also more tolerant to dehydration stress compared to Allium cepa (freezing sensitive). Furthermore, the addition of boric acid (H3BO3) to pure pectin reduced water loss and increased viscosity, which indicates the formation of RG-II dimers. The Arabidopsis boron transport mutant, bor1, expressed greater water loss and, based on the lesion area of leaf tissue, a greater susceptibility to Colletotrichum higginsianum and Botrytis cinerea. While pectin modifications in the cell wall are likely not the sole solution to dehydration and biotic stress resistance, they appear to play an important role against multiple stresses.

19.
Chem Sci ; 13(40): 11817-11828, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320905

RESUMO

A catalytic system for intramolecular C(sp2)-H and C(sp3)-H amination of substituted tetrazolopyridines has been successfully developed. The amination reactions are developed using an iron-porphyrin based catalytic system. It has been demonstrated that the same iron-porphyrin based catalytic system efficiently activates both the C(sp2)-H and C(sp3)-H bonds of the tetrazole as well as azide-featuring substrates with a high level of regioselectivity. The method exhibited an excellent functional group tolerance. The method affords three different classes of high-value N-heterocyclic scaffolds. A number of important late-stage C-H aminations have been performed to access important classes of molecules. Detailed studies (experimental and computational) showed that both the C(sp2)-H and C(sp3)-H amination reactions involve a metalloradical activation mechanism, which is different from the previously reported electro-cyclization mechanism. Collectively, this study reports the discovery of a new class of metalloradical activation modes using a base metal catalyst that should find wide application in the context of medicinal chemistry, drug discovery and industrial applications.

20.
Bioresour Technol ; 344(Pt B): 125964, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34728090

RESUMO

The present study tested the outdoor cultivation of Haloferax mediterranei for PHA production from green macroalgae Ulva sp. in pneumatically agitated bioreactors and applied ultrasonic separation for enhanced settling of archaeal cells. Scaled-up cultivation (40 L) yielded maximum biomass productivity of 50.1 ± 0.11 mg·L-1·h-1 with a PHA productivity of 27 ± 0.01 mg·L-1·h-1 and conversion yield of 0.107 g PHA per gram UlvaDW. The maximum mass fraction of PHA achieved in biomass was calculated to be 56% w/w. Ultrasonic harvesting of Hfx. mediterranei cells approached 30% removal at energy inputs around 7.8 kWh·m-3, and indicated no significant aggregation enhancement by Ca2+ addition. Molecular weight analysis showed an increase in Polydispersity Index (PDI) when the corresponding air velocities were increased suggesting that the polymer was more homogeneous at lower mixing velocities. The current study demonstrated scalable processes for PHA production using Ulva sp. feedstock providing new technologies for halophilic biorefinery.


Assuntos
Haloferax mediterranei , Poli-Hidroxialcanoatos , Ulva , Reatores Biológicos , Plantas Tolerantes a Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA