RESUMO
Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments.
Assuntos
Efeitos Antropogênicos , Anuros , Biodiversidade , Animais , Europa (Continente) , Dinâmica PopulacionalRESUMO
It is well documented that N-methyl-3,4-methylenedioxyamphetamine (MDMA, ecstasy) releases brain serotonin (5-HT; 5-hydroxytryptamine), noradrenaline (NE; norepinephrine), and dopamine, but the consequent effect on brain functioning remains elusive. In this study, we characterized the effects of MDMA on electrically evoked responses in the ventral CA1 region of a rat hippocampal slice preparation. Superfusion with MDMA (10 microM, 30 min) increased the population spike amplitude (PSA) by 48.9+/-31.2% and decreased population spike latency (PSL) by 103+/-139 mus (both: mean+/-SD, n=123; p<0.0001, Wilcoxon test), without affecting field excitatory postsynaptic potential (fEPSP). This effect persisted for at least 1 h after MDMA washout; we have called this EPSP-spike potentiation (ESP) by MDMA, ESP MDMA. Antagonism of GABAergic transmission did not prevent ESP MDMA, suggesting that an increase in excitability of pyramidal cells underlies this MDMA action. Block of serotonin transporter (SERT) with citalopram or 5-HT depletion with (+/-)-p-chlorophenylalanine pretreatment partially inhibited the ESP MDMA. Block of both SERT and NE transporter prevented ESP MDMA, indicating its dependence on release of both 5-HT and NE. ESP MDMA is produced by simultaneous activation of 5-HT4 and beta1 receptors, with a predominant role of 5-HT4 receptors. Block of both 5-HT4 and beta1 receptors revealed an inhibitory component of the MDMA action mediated by 5-HT1A receptor. The concentration range of MDMA which produced ESP MDMA (1-30 microM) corresponds to that commonly reached in human plasma following the ingestion of psychoactive MDMA doses, suggesting that release of both 5-HT and NE, and consequent ESP MDMA may underlie some of the psychoactive effects of MDMA in humans.
Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Norepinefrina/metabolismo , Serotoninérgicos/farmacologia , Serotonina/metabolismo , Adrenérgicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/fisiologia , Receptores 5-HT4 de Serotonina/fisiologia , Estatísticas não ParamétricasRESUMO
Several anuran species of the genus Phyllomedusa are known to possess specialized cutaneous glands producing lipids and exhibit a peculiar wiping behavior. This behavior is a stereotyped repertory of fore and hind limb movements distributing hydrophobic molecules onto the body surface and reducing evaporative water loss. No reports are presently available on the occurrence of lipid glands in other phyllomedusine genera, and data on the structure of the secretory units specialized for the production of cutaneous lipids are still unclear. The present report is aimed to answer both questions: it describes lipid glands of the Phyllomedusa type in Agalychnis callidryas and provides light and transmission electron microscope evidence of the syncytial structure of their secretory units, a typical feature of serous glands in anuran skin. This morphological trait supports the hypothesis that lipid glands are a specialized subset of the anuran serous glands, and underlines their flexible role in the skin adaption to sub-aerial environments. Anat Rec, 300:503-506, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Anuros/anatomia & histologia , Glândulas Exócrinas/anatomia & histologia , Lipídeos/análise , Pele/anatomia & histologia , Animais , Anuros/metabolismo , Glândulas Exócrinas/metabolismo , Pele/metabolismoRESUMO
Consolidation of associative memories appears to require extracellular signal-related kinase2 (ERK2) activation, which is modulated by several factors, including neurotransmitter receptor stimulation. Here we show that in vitro stimulation of either H2 or H3 histaminergic receptors activates ERK2 in hippocampal CA3 pyramidal cells. In behaving animals, bilateral posttraining injections into the dorsal hippocampus of histamine H2 or H3 receptor agonists improve memory consolidation after contextual fear conditioning. Local administration of U0126, a selective inhibitor of ERK kinase, prevents memory improvements exerted by the agonists, without causing any behavioral effect per se. This is the first evidence of a positive correlation between ERK phosphorylation and memory improvement. Moreover, we demonstrate that the brain histaminergic system regulates hippocampal ERK cascade. Finally, our data indicate that early ERK2 hippocampal activation is not required for the expression of long-term fear memories.
Assuntos
Medo/fisiologia , Hipocampo/fisiologia , Histamina/farmacologia , Memória/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Animais , Butadienos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores H2 da Histamina/farmacologia , Técnicas In Vitro , Masculino , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Histamínicos H2/efeitos dos fármacos , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H3/efeitos dos fármacos , Receptores Histamínicos H3/metabolismo , Bloqueadores dos Canais de Sódio/farmacologiaRESUMO
Three types of serous products were detected in the syncytial cutaneous glands of the leptodactylid tungara frog, Engystomops pustulosus: type Ia, granules with wide halos and variable density cores; type Ib, high density granules without halos; and type II, vesicles containing a finely dispersed product. Ultrastructural evidence revealed that these products were manufactured by different serous gland types and excluded that they represented different steps in the secretory cycle of a single gland type. Indeed, secretory maturation affecting the products released by the Golgi apparatus proceeded through different mechanisms: confluence (vesicles), interactions between syncytium and secretory product (type Ib granules), and a combination of both processes (type Ia granules). In conclusion, this investigation of secretory maturation was shown to be a suitable approach for the identification of serous gland polymorphism and demonstrated that the tungara frog belongs to the minority of anuran species characterized by this peculiar morpho-functional trait.
Assuntos
Anuros/anatomia & histologia , Grânulos Citoplasmáticos/ultraestrutura , Glândulas Exócrinas/ultraestrutura , Vesículas Secretórias/ultraestrutura , Pele/ultraestrutura , Animais , Anuros/classificação , Microscopia Eletrônica de TransmissãoRESUMO
An ultrastructural study was carried out on the epidermis of Agalychnis callidryas tadpoles during limb development. Larval epidermis consisted of four cell layers: basal, lower intermediate, upper intermediate, and surface or apical layers. Basal cells represented the stem compartment of intermediate cells: both belong to the skein cell (SC) lineage, described in several anuran species, on account of the conspicuous intracytoplasmic tonofilament bundles. Apical cells were secretory in nature and released mucus on the body surface. Intermediate SCs exhibited a hydrated central cytoplasm and peripheral tonofilament bundles. They closely resembled the epidermal ball-like cells, Kugelzellen (KZn) of Xenopus laevis tadpoles, and possibly shared their turgor-stiffness properties. In A. callidryas, the stratification of intermediated SCs on their stem cell layer provided the chance to study their cytodifferentiation in a suitable sequence, until basal cell differentiation shifted toward the keratinocyte lineage in premetamorphic stages. Present data assign A. callidryas to the anuran species with a constitutive SC population in larval epidermis, and demonstrate that KZn express the ultimate specialization of such cell line. SCs were arranged in the fashion of a random-rubble stone groundwork, and possessed long processes. These cytoplasmic outgrowths contained a tonofilament axial rod and held together contiguous cells. Ultrastructural findings suggest that this complex structure may impart compressive as well as sliding strengths to the larval epidermis, representing a possible adaption to the fresh water environment.