Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 689, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839931

RESUMO

Advanced methods such as REACT have allowed the integration of fMRI with the brain's receptor landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly, normative modelling has allowed translational neuroscience to move beyond group-average differences and characterise deviations from health at an individual level. Here, we bring these methods together for the first time. We used REACT to create functional networks enriched with the main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative models of these networks to capture functional connectivity deviations in patients with schizophrenia, bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations from normality across groups, but these could be mapped into a common space linking constellations of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for developing novel biomarkers that characterise molecular- and systems-level dysfunction at the individual level, facilitating the transition towards mechanistically targeted treatments.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Adulto , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Feminino , Transtorno Bipolar/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtornos Mentais/fisiopatologia , Transtornos Mentais/diagnóstico por imagem , Adulto Jovem , Modelos Neurológicos , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
2.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37744469

RESUMO

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

3.
J Cereb Blood Flow Metab ; 43(8): 1285-1300, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026455

RESUMO

In this study we evaluate the performance of a fully automated analytical framework for FDOPA PET neuroimaging data, and its sensitivity to demographic and experimental variables and processing parameters. An instance of XNAT imaging platform was used to store the King's College London institutional brain FDOPA PET imaging archive, alongside individual demographics and clinical information. By re-engineering the historical Matlab-based scripts for FDOPA PET analysis, a fully automated analysis pipeline for imaging processing and data quantification was implemented in Python and integrated in XNAT. The final data repository includes 892 FDOPA PET scans organized from 23 different studies. We found good reproducibility of the data analysis by the automated pipeline (in the striatum for the Kicer: for the controls ICC = 0.71, for the psychotic patients ICC = 0.88). From the demographic and experimental variables assessed, gender was found to most influence striatal dopamine synthesis capacity (F = 10.7, p < 0.001), with women showing greater dopamine synthesis capacity than men. Our automated analysis pipeline represents a valid resourse for standardised and robust quantification of dopamine synthesis capacity using FDOPA PET data. Combining information from different neuroimaging studies has allowed us to test it comprehensively and to validate its replicability and reproducibility performances on a large sample size.


Assuntos
Di-Hidroxifenilalanina , Dopamina , Masculino , Humanos , Feminino , Dopamina/metabolismo , Reprodutibilidade dos Testes , Tomografia por Emissão de Pósitrons/métodos , Neuroimagem
4.
STAR Protoc ; 3(2): 101315, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35479111

RESUMO

The integration of neuroimaging and transcriptomics data, Imaging Transcriptomics, is becoming increasingly popular but standardized workflows for its implementation are still lacking. We describe the Imaging Transcriptomics toolbox, a new package that implements a full imaging transcriptomics pipeline using a user-friendly, command line interface. This toolbox allows the user to identify patterns of gene expression which correlates with a specific neuroimaging phenotype and perform gene set enrichment analyses to inform the biological interpretation of the findings using up-to-date methods. For complete details on the use and execution of this protocol, please refer to Martins et al. (2021).


Assuntos
Software , Transcriptoma , Neuroimagem , Fenótipo , Fluxo de Trabalho
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2712-2715, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36083944

RESUMO

With the modernization and digitisation of the healthcare system, the need for exchanging medical data has become increasingly compelling. Biomedical imaging has been no exception, where the gathering of medical imaging acquisitions from multi-site collaborations have enabled to reach data sizes never imaginable until few years ago. Usually, medical imaging data have very large volume and diverse complexity, requiring bespoken transfer systems that protect personal information as well as data integrity. Despite many digital innovations, there are still technical and regulatory bottlenecks that make biomedical imaging data exchange challenging. Here we present Bitbox, a web-based application which provides a reliable yet straightforward service to securely exchange medical imaging data. With Bitbox, both imaging and non-imaging data of any type can be transferred from any external and independent site into a centralized server. A showcase of the system will be illustrated for the COVID-19 Clinical Neuroscience Study (COVID-CNS) project, a UK-wide experimental medicine study to investigate the neurological and neuropsychiatric effects of COVID-19 infections in hundreds of patients.


Assuntos
COVID-19 , Computação em Nuvem , Atenção à Saúde , Diagnóstico por Imagem , Humanos , Disseminação de Informação
6.
Cell Rep ; 37(13): 110173, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965413

RESUMO

The integration of transcriptomic and neuroimaging data, "imaging transcriptomics," has recently emerged to generate hypotheses about potential biological pathways underlying regional variability in neuroimaging features. However, the validity of this approach is yet to be examined in depth. Here, we sought to bridge this gap by performing transcriptomic decoding of the regional distribution of well-known molecular markers spanning different elements of the biology of the healthy human brain. Imaging transcriptomics identifies biological and cell pathways that are consistent with the known biology of a wide range of molecular neuroimaging markers. The extent to which it can capture patterns of gene expression that align well with elements of the biology of the neuroinflammatory axis, at least in healthy controls without a proinflammatory challenge, is inconclusive. Imaging transcriptomics might constitute an interesting approach to improve our understanding of the biological pathways underlying regional variability in a wide range of neuroimaging phenotypes.


Assuntos
Biomarcadores/metabolismo , Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Neuroimagem/métodos , Transcriptoma , Adulto , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Adulto Jovem
7.
Comput Methods Programs Biomed ; 208: 106239, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34289438

RESUMO

INTRODUCTION: With biomedical imaging research increasingly using large datasets, it becomes critical to find operator-free methods to quality control the data collected and the associated analysis. Attempts to use artificial intelligence (AI) to perform automated quality control (QC) for both single-site and multi-site datasets have been explored in some neuroimaging techniques (e.g. EEG or MRI), although these methods struggle to find replication in other domains. The aim of this study is to test the feasibility of an automated QC pipeline for brain [18F]-FDOPA PET imaging as a biomarker for the dopamine system. METHODS: Two different Convolutional Neural Networks (CNNs) were used and combined to assess spatial misalignment to a standard template and the signal-to-noise ratio (SNR) relative to 200 static [18F]-FDOPA PET images that had been manually quality controlled from three different PET/CT scanners. The scans were combined with an additional 400 scans, in which misalignment (200 scans) and low SNR (200 scans) were simulated. A cross-validation was performed, where 80% of the data were used for training and 20% for validation. Two additional datasets of [18F]-FDOPA PET images (50 and 100 scans respectively with at least 80% of good quality images) were used for out-of-sample validation. RESULTS: The CNN performance was excellent in the training dataset (accuracy for motion: 0.86 ± 0.01, accuracy for SNR: 0.69 ± 0.01), leading to 100% accurate QC classification when applied to the two out-of-sample datasets. Data dimensionality reduction affected the generalizability of the CNNs, especially when the classifiers were applied to the out-of-sample data from 3D to 1D datasets. CONCLUSIONS: This feasibility study shows that it is possible to perform automatic QC of [18F]-FDOPA PET imaging with CNNs. The approach has the potential to be extended to other PET tracers in both brain and non-brain applications, but it is dependent on the availability of large datasets necessary for the algorithm training.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA