Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38558967

RESUMO

Background: Cardiac dysfunction in AL amyloidosis is thought to be partly related to the direct impact of AL LCs on cardiomyocyte function, with the degree of dysfunction at diagnosis as a major determinant of clinical outcomes. Nonetheless, mechanisms underlying LC-induced myocardial toxicity are not well understood. Methods: We identified gene expression changes correlating with human cardiac cells exposed to a cardiomyopathy-associated κAL LC. We then sought to confirm these findings in a clinical dataset by focusing on clinical parameters associated with the pathways dysregulated at the gene expression level. Results: Upon exposure to a cardiomyopathy-associated κAL LC, cardiac cells exhibited gene expression changes related to myocardial contractile function and inflammation, leading us to hypothesize that there could be clinically detectable changes in GLS on echocardiogram and serum inflammatory markers in patients. Thus, we identified 29 patients with normal IVSd but abnormal cardiac biomarkers suggestive of LC-induced cardiac dysfunction. These patients display early cardiac biomarker staging, abnormal GLS, and significantly reduced serum inflammatory markers compared to patients with clinically evident amyloid fibril deposition. Conclusion: Collectively, our findings highlight early molecular and functional signatures of cardiac AL amyloidosis, with potential impact for developing improved patient biomarkers and novel therapeutics.

2.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559230

RESUMO

Centenarians provide a unique lens through which to study longevity, healthy aging, and resiliency. Moreover, models of human aging and resilience to disease that allow for the testing of potential interventions are virtually non-existent. We obtained and characterized over 50 centenarian and offspring peripheral blood samples including those connected to functional independence data highlighting resistance to disability and cognitive impairment. Targeted methylation arrays were used in molecular aging clocks to compare and contrast differences between biological and chronological age in these specialized subjects. Isolated peripheral blood mononuclear cells (PBMCs) were then successfully reprogrammed into high-quality induced pluripotent stem cell (iPSC) lines which were functionally characterized for pluripotency, genomic stability, and the ability to undergo directed differentiation. The result of this work is a one-of-a-kind resource for studies of human longevity and resilience that can fuel the discovery and validation of novel therapeutics for aging-related disease.

3.
J Clin Invest ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722695

RESUMO

Spinal Muscular Atrophy (SMA) is typically characterized as a motor neuron disease, but extra-neuronal phenotypes are present in almost every organ in severely affected patients and animal models. Extra-neuronal phenotypes were previously underappreciated as patients with severe SMA phenotypes usually died in infancy; however, with current treatments for motor neurons increasing patient lifespan, impaired function of peripheral organs may develop into significant future comorbidities and lead to new treatment-modified phenotypes. Fatty liver is seen in SMA animal models , but generalizability to patients and whether this is due to hepatocyte-intrinsic Survival Motor Neuron (SMN) protein deficiency and/or subsequent to skeletal muscle denervation is unknown. If liver pathology in SMA is SMN-dependent and hepatocyte-intrinsic, this suggests SMN repleting therapies must target extra-neuronal tissues and motor neurons for optimal patient outcome. Here we showed that fatty liver is present in SMA and that SMA patient-specific iHeps were susceptible to steatosis. Using proteomics, functional studies and CRISPR/Cas9 gene editing, we confirmed that fatty liver in SMA is a primary SMN-dependent hepatocyte-intrinsic liver defect associated with mitochondrial and other hepatic metabolism implications. These pathologies require monitoring and indicate need for systematic clinical surveillance and additional and/or combinatorial therapies to ensure continued SMA patient health.

4.
Methods Mol Biol ; 2693: 39-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540425

RESUMO

RNA sequencing (RNA-seq) is a powerful method of transcriptional analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq can be used for differential gene expression (DGE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology or pathway analysis to provide insight into processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Chaperonas Moleculares , RNA-Seq , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Chaperonas Moleculares/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma
5.
Front Cell Neurosci ; 17: 1327361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38314348

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron (MN) disease with severely limited treatment options. Identification of effective treatments has been limited in part by the lack of predictive animal models for complex human disorders. Here, we utilized pharmacologic ER stressors to exacerbate underlying sensitivities conferred by ALS patient genetics in induced pluripotent stem cell (iPSC)-derived motor neurons (MNs). In doing so, we found that thapsigargin and tunicamycin exposure recapitulated ALS-associated degeneration, and that we could rescue this degeneration via MAP4K4 inhibition (MAP4K4i). We subsequently identified mechanisms underlying MAP4K4i-mediated protection by performing phosphoproteomics on iPSC-derived MNs treated with ER stressors ±MAP4K4i. Through these analyses, we found JNK, PKC, and BRAF to be differentially modulated in MAP4K4i-protected MNs, and that inhibitors to these proteins could also rescue MN toxicity. Collectively, this study highlights the value of utilizing ER stressors in ALS patient MNs to identify novel druggable targets.

6.
Amyloid ; 30(4): 379-393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439769

RESUMO

BACKGROUND: In ATTR amyloidosis, transthyretin (TTR) protein is secreted from the liver and deposited as toxic aggregates at downstream target tissues. Despite recent advancements in treatments for ATTR amyloidosis, the mechanisms underlying misfolded TTR-mediated cellular damage remain elusive. METHODS: In an effort to define early events of TTR-associated stress, we exposed neuronal (SH-SY5Y) and cardiac (AC16) cells to wild-type and destabilized TTR variants (TTRV122I (p.V142I) and TTRL55P (p.L70P)) and performed transcriptional (RNAseq) and epigenetic (ATACseq) profiling. We subsequently compared TTR-responsive signatures to cells exposed to destabilized antibody light chain protein associated with AL amyloidosis as well as ER stressors (thapsigargin, heat shock). RESULTS: In doing so, we observed overlapping, yet distinct cell type- and amyloidogenic protein-specific signatures, suggesting unique responses to each amyloidogenic variant. Moreover, we identified chromatin level changes in AC16 cells exposed to mutant TTR that resolved upon pre-incubation with kinetic stabilizer tafamidis. CONCLUSIONS: Collectively, these data provide insight into the mechanisms underlying destabilized protein-mediated cellular damage and provide a robust resource representing cellular responses to aggregation-prone proteins and ER stress.


Assuntos
Neuropatias Amiloides Familiares , Amiloidose , Neuroblastoma , Humanos , Neuropatias Amiloides Familiares/complicações , Proteínas Amiloidogênicas/genética , Amiloidose/metabolismo , Neuroblastoma/complicações , Neurônios/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo
7.
Neuron ; 111(8): 1222-1240.e9, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36917977

RESUMO

Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Gasderminas , Camundongos Knockout , Neurônios Motores/metabolismo , Axônios/metabolismo
8.
Nat Aging ; 3(3): 327-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118429

RESUMO

Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.


Assuntos
Células Endoteliais , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Envelhecimento/genética , Parabiose , Encéfalo
9.
Immunohorizons ; 6(1): 16-35, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039433

RESUMO

Neutrophils mediate critical innate immune responses by migrating to sites of infection or inflammation, phagocytosing microorganisms, and releasing an arsenal of antimicrobial agents, including reactive oxygen species. These functions are shared by other innate immune cell types, but an interesting feature of neutrophils is their hallmark lobulated nuclei. Although why this bizarre nuclear shape forms is still being elucidated, studies of two intermediate filament proteins that associate with the nuclear envelope, lamin A and C, indicate that expression levels of these proteins govern nuclear maturation. These A-type lamins also modulate nuclear stiffness, the loss of which may be critical to the migration of not only neutrophils but also cancer cells that become prone to metastasis. We investigated whether increased expression of either lamin A or C affects neutrophil nuclear morphologic maturation, but more importantly we tested whether overexpression of either lamin also affects neutrophil functional responses, using two mouse myeloid progenitor models that can be induced toward functionally responsive neutrophil-like cells. Collectively, our results demonstrate that overexpression of either lamin A or C not only disrupts nuclear lobulation but also causes aberrant functional responses critical to innate immunity, including chemotaxis, phagocytosis, and reactive oxygen species production. Moreover, the lamin A-overexpressing cells exhibit decreased expression of a critical NADPH oxidase complex factor, gp91phox, and transcriptomic profiling demonstrated differential expression of a number of myeloid differentiation and functional pathway components. Taken together, these data demonstrate that A-type lamin expression levels modulate not only nuclear morphologic features but also gene expression changes as neutrophils mature.


Assuntos
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Neutrófilos/metabolismo , Transcriptoma , Animais , Diferenciação Celular/genética , Linhagem Celular , Núcleo Celular/genética , Quimiotaxia/genética , Imunidade Inata , Camundongos , NADPH Oxidase 2/metabolismo , Fagocitose/genética
10.
STAR Protoc ; 1(2): 100102, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32954369

RESUMO

The protocols herein outline the use of qRT-PCR to detect the presence of SARS-CoV-2 genomic RNA in patient samples. In order to cope with potential fluctuations in supply chain and testing demands and to enable expedient adaptation of reagents and assays on hand, we include details for three parallel methodologies (one- and two-step singleplex and one-step multiplex assays). The diagnostic platforms described can be easily adapted by basic science research laboratories for SARS-CoV-2 diagnostic testing with relatively short turnaround time. For complete details on the use and execution of this protocol, please refer to Vanuytsel et al. (2020).


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Notificação de Doenças/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Humanos , SARS-CoV-2/isolamento & purificação , Software
11.
Med ; 1(1): 152-157.e3, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32838351

RESUMO

BACKGROUND: Significant delays in the rapid development and distribution of diagnostic testing for SARS-CoV-2 (COVID-19) infection have prevented adequate public health management of the disease, impacting the timely mapping of viral spread and the conservation of personal protective equipment. Furthermore, vulnerable populations, such as those served by the Boston Medical Center (BMC), the largest safety net hospital in New England, represent a high-risk group across multiple dimensions, including a higher prevalence of pre-existing conditions and substance use disorders, lower health maintenance, unstable housing, and a propensity for rapid community spread, highlighting the urgent need for expedient and reliable in-house testing. METHODS: We developed a SARS-CoV-2 diagnostic medium-throughput qRT-PCR assay with rapid turnaround time and utilized this Clinical Laboratory Improvement Amendments (CLIA)-certified assay for testing nasopharyngeal swab samples from BMC patients, with emergency authorization from the Food and Drug Administration (FDA) and the Massachusetts Department of Public Health. FINDINGS: The in-house testing platform displayed robust accuracy and reliability in validation studies and reduced institutional sample turnaround time from 5-7 days to less than 24 h. Of over 1,000 unique patient samples tested, 44.1% were positive for SARS-CoV-2 infection. CONCLUSIONS: This work provides a blueprint for academic centers and community hospitals lacking automated laboratory machinery to implement rapid in-house testing. FUNDING: This study was supported by funding from the Boston University School of Medicine, the National Institutes of Health, Boston Medical Center, and the Massachusetts Consortium on Pathogen Readiness (MASS CPR).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Provedores de Redes de Segurança , Sensibilidade e Especificidade
12.
Stem Cell Reports ; 15(2): 515-528, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735824

RESUMO

The systemic amyloidoses are diverse disorders in which misfolded proteins are secreted by effector organs and deposited as proteotoxic aggregates at downstream tissues. Although well described clinically, the contribution of synthesizing organs to amyloid disease pathogenesis is unknown. Here, we utilize hereditary transthyretin amyloidosis (ATTR amyloidosis) induced pluripotent stem cells (iPSCs) to define the contribution of hepatocyte-like cells (HLCs) to the proteotoxicity of secreted transthyretin (TTR). To this end, we generated isogenic, patient-specific iPSCs expressing either amyloidogenic or wild-type TTR. We combined this tool with single-cell RNA sequencing to identify hepatic proteostasis factors correlating with destabilized TTR production in iPSC-derived HLCs. By generating an ATF6 inducible patient-specific iPSC line, we demonstrated that enhancing hepatic ER proteostasis preferentially reduces the secretion of amyloidogenic TTR. These data highlight the liver's capacity to chaperone misfolded TTR prior to deposition, and moreover suggest the potential for unfolded protein response modulating therapeutics in the treatment of diverse systemic amyloidoses.


Assuntos
Neuropatias Amiloides Familiares/patologia , Amiloide/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Fígado/patologia , Modelos Biológicos , Pré-Albumina/metabolismo , Proteostase , Fator 6 Ativador da Transcrição/metabolismo , Neuropatias Amiloides Familiares/genética , Edição de Genes , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mutação/genética , Pré-Albumina/genética , Regiões Promotoras Genéticas/genética , Estabilidade Proteica , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Estresse Fisiológico , Transferrina/metabolismo , Resposta a Proteínas não Dobradas
13.
Amyloid ; 25(3): 148-155, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30032658

RESUMO

Hereditary transthyretin amyloidosis (ATTR amyloidosis) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR amyloidosis, protein secreted from the liver aggregates and forms amyloid fibrils in downstream target organs, chiefly the heart and peripheral nervous system. Few animal models of ATTR amyloidosis exist and none recapitulate the multisystem complexity and clinical variability associated with disease pathogenesis in patients. Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and perhaps treat patients afflicted with highly variable multisystem diseases such as ATTR amyloidosis. Here, we fully characterize six representative iPSC lines from a library of previously reprogrammed iPSC lines and reprogrammable blood samples derived from ATTR amyloidosis patients. This unique resource, described herein, can be harnessed to study diverse disorder.


Assuntos
Neuropatias Amiloides Familiares/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA