RESUMO
BACKGROUND: Aspergillus species belonging to section Nigri are the main fungi responsible for ochratoxin (OTA) contamination in grapes and wine. These species live as saprophytes in the superficial layer of the vineyard soil. We evaluated the biodiversity of potentially ochratoxigenic strains of Aspergillus section Nigri isolated from vineyard soils from different grapevine growing regions of Argentina. The isolates were characterized by classical and molecular methods. A multiple correspondence analysis was performed to identify the overall correlation of the Aspergillus group distribution with environmental conditions, geographical characteristics and vineyard practices. RESULTS: Aspergillus niger aggregate was the prevalent group (71%) and A. carbonarius made up only 2%. Species discrimination by species-specific primers showed that in A. niger aggregate 89% were A. tubingensis; 97% of the uniseriate were A. japonicus/A. aculeatus. Isolates belonging to these groups were unable to produce OTA. Our results clearly demonstrate a strong association between presence of A. carbonarius, high average temperatures and drip irrigation. Precipitation levels appear as a secondary factor, and altitude, vineyard age, predominant species, grape variety or total fungal count showed no association with A. carbonarius. CONCLUSION: We demonstrated a low prevalence of ochratoxigenic species in vineyard soil from the grape-growing regions of Argentina.
Assuntos
Agricultura/métodos , Aspergillus/isolamento & purificação , Microbiologia do Solo , Vitis , Argentina , Aspergillus/classificaçãoRESUMO
BACKGROUND: The current COVID-19 pandemic has overloaded the diagnostic capacity of laboratories by the gold standard method rRT-PCR. This disease has a high spread rate and almost a quarter of infected individuals never develop symptoms. In this scenario, active surveillance is crucial to stop the virus propagation. METHODS: Between July 2020 and April 2021, 11,580 oropharyngeal swab samples collected in closed and semi-closed institutions were processed for SARS-CoV-2 detection in pools, implementing this strategy for the first time in Córdoba, Argentina. Five-sample pools were constituted before nucleic acid extraction and amplification by rRT-PCR. Comparative analysis of cycle threshold (Ct) values from positive pools and individual samples along with a cost-benefit report of the whole performance of the results was performed. RESULTS: From 2,314 5-sample pools tested, 158 were classified as positive (6.8%), 2,024 as negative (87.5%), and 132 were categorized as indeterminate (5.7%). The Ct value shift due to sample dilution showed an increase in Ct of 2.6±1.53 cycles for N gene and 2.6±1.78 for ORF1ab gene. Overall, 290 pools were disassembled and 1,450 swabs were analyzed individually. This strategy allowed correctly identifying 99.8% of the samples as positive (7.6%) or negative (92.2%), avoiding the execution of 7,806 rRT-PCR reactions which represents a cost saving of 67.5%. CONCLUSION: This study demonstrates the feasibility of pooling samples to increase the number of tests performed, helping to maximize molecular diagnostic resources and reducing the work overload of specialized personnel during active surveillance of the COVID-19 pandemic.
Assuntos
COVID-19 , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Conduta ExpectanteRESUMO
BACKGROUND: In the last years, food grade antioxidants are used safely as an alternative to traditional fungicides to control fungal growth in several food and agricultural products. AIMS: In this work, the effect of butylated hydroxyanisole (BHA) and propyl paraben (PP) on two hydrolytic enzyme activity (ß-d-glucosidase and α-d-galactosidase) by Aspergillus section Nigri species under different water activity conditions (aW; 0.98, 0.95 and 0.93) and incubation time intervals (24, 48, 72 and 96h) was evaluated on peanut-based medium. METHODS: The activity of two glycosidases, ß-d-glucosidase and α-d-galactosidase, was assayed using as substrates 4-nitrophenyl-ß-d-glucopyranosido and 4-nitrophenyl-α-d-galactopyranosido, respectively. The enzyme activity was determined by the increase in optical density at 405nm caused by the liberation of p-nitrophenol by enzymatic hydrolysis of the substrate. Enzyme activity was expressed as micromoles of p-nitrophenol released per minute. RESULTS: The major inhibition in ß-d-glucosidase activity of A. carbonarius and A. niger was found with 20mmoll(-1) of BHA or PP at 0.98 and 0.95 aW, respectively, whereas for α-d-galactosidase activity a significant decrease in enzyme activity with respect to control was observed in A. carbonarius among 5 to 20mmoll(-1) of BHA or PP in all conditions assayed. Regarding A. niger, the highest percentages of enzyme inhibition activity were found with 20mmoll(-1) of BHA or PP at 0.95 aW and 96h. CONCLUSIONS: The results of this work provide information about the capacity of BHA and PP to inhibit in vitro conditions two of the most important hydrolytic enzymes produced by A. carbonarius and A. niger species.