Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Biol Chem ; 300(1): 105486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992807

RESUMO

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.


Assuntos
Fertilização , PPAR gama , Peptidil Dipeptidase A , Espermatozoides , Animais , Feminino , Humanos , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fertilização/genética , PPAR gama/genética , PPAR gama/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/enzimologia , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proteínas Mitocondriais/genética , Técnicas de Inativação de Genes , Fosforilação Oxidativa
2.
Med Res Rev ; 44(2): 587-605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947345

RESUMO

The renin-angiotensin system (RAS) has been widely known as a circulating endocrine system involved in the control of blood pressure. However, components of RAS have been found to be localized in rather unexpected sites in the body including the kidneys, brain, bone marrow, immune cells, and reproductive system. These discoveries have led to steady, growing evidence of the existence of independent tissue RAS specific to several parts of the body. It is important to understand how RAS regulates these systems for a variety of reasons: It gives a better overall picture of human physiology, helps to understand and mitigate the unintended consequences of RAS-inhibiting or activating drugs, and sets the stage for potential new therapies for a variety of ailments. This review fulfills the need for an updated overview of knowledge about local tissue RAS in several bodily systems, including their components, functions, and medical implications.


Assuntos
Rim , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Rim/metabolismo , Angiotensina II/metabolismo , Peptidil Dipeptidase A/metabolismo
3.
Circ Res ; 131(1): 59-73, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35574842

RESUMO

BACKGROUND: Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown. METHODS: Both in vitro and in vivo approaches were used to investigate the molecular and cellular contributors to the renal inflammation associated with diabetic kidney disease and how these inflammatory components interact to develop salt sensitivity in db/db mice. RESULTS: Thirty-four-week-old db/db mice display significantly higher levels of IL-1ß in renal tubules compared with nondiabetic db/+ mice. Specific suppression of IL-1ß in renal tubules prevented salt sensitivity in db/db mice. A primary culture of renal tubular epithelial cells from wild-type mice releases significant levels of IL-1ß when exposed to a high glucose environment. Coculture of tubular epithelial cells and bone marrow-derived macrophages revealed that tubular epithelial cell-derived IL-1ß promotes the polarization of macrophages towards a proinflammatory phenotype resulting in IL-6 secretion. To evaluate whether macrophages are the cellular target of IL-1ß in vivo, diabetic db/db mice were transplanted with the bone marrow of IL-1R1 (IL-1 receptor type 1) knockout mice. db/db mice harboring an IL-1 receptor type 1 knockout bone marrow remained salt resistant, display lower renal inflammation and lower expression and activity of epithelial sodium channel compared with db/db transplanted with a wild-type bone marrow. CONCLUSIONS: Renal tubular epithelial cell-derived IL-1ß polarizes renal macrophages towards a proinflammatory phenotype that promotes salt sensitivity through the accumulation of renal IL-6. When tubular IL-1ß synthesis is suppressed or in db/db mice in which immune cells lack the IL-1R1, macrophage polarization is blunted resulting in no salt-sensitive hypertension.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Nefrite , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Receptores de Interleucina-1/metabolismo , Cloreto de Sódio na Dieta/toxicidade
4.
J Am Soc Nephrol ; 32(5): 1131-1149, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731332

RESUMO

BACKGROUND: Hypertension is considered a major risk factor for the progression of diabetic kidney disease. Type 2 diabetes is associated with increased renal sodium reabsorption and salt-sensitive hypertension. Clinical studies show that men have higher risk than premenopausal women for the development of diabetic kidney disease. However, the renal mechanisms that predispose to salt sensitivity during diabetes and whether sexual dimorphism is associated with these mechanisms remains unknown. METHODS: Female and male db/db mice exposed to a high-salt diet were used to analyze the progression of diabetic kidney disease and the development of hypertension. RESULTS: Male, 34-week-old, db/db mice display hypertension when exposed to a 4-week high-salt treatment, whereas equivalently treated female db/db mice remain normotensive. Salt-sensitive hypertension in male mice was associated with no suppression of the epithelial sodium channel (ENaC) in response to a high-salt diet, despite downregulation of several components of the intrarenal renin-angiotensin system. Male db/db mice show higher levels of proinflammatory cytokines and more immune-cell infiltration in the kidney than do female db/db mice. Blocking inflammation, with either mycophenolate mofetil or by reducing IL-6 levels with a neutralizing anti-IL-6 antibody, prevented the development of salt sensitivity in male db/db mice. CONCLUSIONS: The inflammatory response observed in male, but not in female, db/db mice induces salt-sensitive hypertension by impairing ENaC downregulation in response to high salt. These data provide a mechanistic explanation for the sexual dimorphism associated with the development of diabetic kidney disease and salt sensitivity.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Canais Epiteliais de Sódio/fisiologia , Hipertensão/etiologia , Cloreto de Sódio na Dieta/administração & dosagem , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Hipertensão/metabolismo , Hipertensão/patologia , Inflamação , Masculino , Camundongos , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos
5.
J Biol Chem ; 295(5): 1369-1384, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31871049

RESUMO

Angiotensin-converting enzyme (ACE) affects blood pressure. In addition, ACE overexpression in myeloid cells increases their immune function. Using MS and chemical analysis, we identified marked changes of intermediate metabolites in ACE-overexpressing macrophages and neutrophils, with increased cellular ATP (1.7-3.0-fold) and Krebs cycle intermediates, including citrate, isocitrate, succinate, and malate (1.4-3.9-fold). Increased ATP is due to ACE C-domain catalytic activity; it is reversed by an ACE inhibitor but not by an angiotensin II AT1 receptor antagonist. In contrast, macrophages from ACE knockout (null) mice averaged only 28% of the ATP levels found in WT mice. ACE overexpression does not change cell or mitochondrial size or number. However, expression levels of the electron transport chain proteins NDUFB8 (complex I), ATP5A, and ATP5ß (complex V) are significantly increased in macrophages and neutrophils, and COX1 and COX2 (complex IV) are increased in macrophages overexpressing ACE. Macrophages overexpressing ACE have increased mitochondrial membrane potential (24% higher), ATP production rates (29% higher), and maximal respiratory rates (37% higher) compared with WT cells. Increased cellular ATP underpins increased myeloid cell superoxide production and phagocytosis associated with increased ACE expression. Myeloid cells overexpressing ACE indicate the existence of a novel pathway in which myeloid cell function can be enhanced, with a key feature being increased cellular ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Células Mieloides/metabolismo , Peptidil Dipeptidase A/metabolismo , Animais , Ciclo do Ácido Cítrico , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neutrófilos/metabolismo , Oxirredução , Estresse Oxidativo , Peptidil Dipeptidase A/genética , Regulação para Cima
6.
Am J Physiol Renal Physiol ; 321(1): F69-F81, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34056928

RESUMO

The renal nephron consists of a series of distinct cell types that function in concert to maintain fluid and electrolyte balance and blood pressure. The renin-angiotensin system (RAS) is central to Na+ and volume balance. We aimed to determine how loss of angiotensin II signaling in the proximal tubule (PT), which reabsorbs the bulk of filtered Na+ and volume, impacts solute transport throughout the nephron. We hypothesized that PT renin-angiotensin system disruption would not only depress PT Na+ transporters but also impact downstream Na+ transporters. Using a mouse model in which the angiotensin type 1a receptor (AT1aR) is deleted specifically within the PT (AT1aR PTKO), we profiled the abundance of Na+ transporters, channels, and claudins along the nephron. Absence of PT AT1aR signaling was associated with lower abundance of PT transporters (Na+/H+ exchanger isoform 3, electrogenic Na+-bicarbonate cotransporter 1, and claudin 2) as well as lower abundance of downstream transporters (total and phosphorylated Na+-K+-2Cl- cotransporter, medullary Na+-K+-ATPase, phosphorylated NaCl cotransporter, and claudin 7) versus controls. However, transport activities of Na+-K+-2Cl- cotransporter and NaCl cotransporter (assessed with diuretics) were similar between groups in order to maintain electrolyte balance. Together, these results demonstrate the primary impact of angiotensin II regulation on Na+ reabsorption in the PT at baseline and the associated influence on downstream Na+ transporters, highlighting the ability of the nephron to integrate Na+ transport along the nephron to maintain homeostasis.NEW & NOTEWORTHY Our study defines a novel role for proximal tubule angiotensin receptors in regulating the abundance of Na+ transporters throughout the nephron, thereby contributing to the integrated control of fluid balance in vivo.


Assuntos
Angiotensina II/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Néfrons/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Rim/metabolismo , Natriurese/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo
7.
J Biol Chem ; 294(12): 4368-4380, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670595

RESUMO

Angiotensin-converting enzyme (ACE) can hydrolyze many peptides and plays a central role in controlling blood pressure. Moreover, ACE overexpression in monocytes and macrophages increases resistance of mice to tumor growth. ACE is composed of two independent catalytic domains. Here, to investigate the specific role of each domain in tumor resistance, we overexpressed either WT ACE (Tg-ACE mice) or ACE lacking N- or C-domain catalytic activity (Tg-NKO and Tg-CKO mice) in the myeloid cells of mice. Tg-ACE and Tg-NKO mice exhibited strongly suppressed growth of B16-F10 melanoma because of increased ACE expression in macrophages, whereas Tg-CKO mice resisted melanoma no better than WT animals. The effect of ACE overexpression reverted to that of the WT enzyme with an ACE inhibitor but not with an angiotensin II type 1 (AT1) receptor antagonist. ACE C-domain overexpression in macrophages drove them toward a pronounced M1 phenotype upon tumor stimulation, with increased activation of NF-κB and signal transducer and activator of transcription 1 (STAT1) and decreased STAT3 and STAT6 activation. Tumor necrosis factor α (TNFα) is important for M1 activation, and TNFα blockade reverted Tg-NKO macrophages to a WT phenotype. Increased ACE C-domain expression increased the levels of reactive oxygen species (ROS) and of the transcription factor C/EBPß in macrophages, important stimuli for TNFα expression, and decreased expression of several M2 markers, including interleukin-4Rα. Natural ACE C-domain-specific substrates are not well-described, and we propose that the peptide(s) responsible for the striking ACE-mediated enhancement of myeloid function are substrates/products of the ACE C-domain.


Assuntos
Polaridade Celular , Macrófagos/citologia , Melanoma Experimental/patologia , Peptidil Dipeptidase A/metabolismo , Animais , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Macrófagos/imunologia , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Peptidil Dipeptidase A/química , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
8.
Curr Hypertens Rep ; 22(1): 4, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31916032

RESUMO

PURPOSE OF REVIEW: To review recent studies exploring how myeloid cell overexpression of angiotensin-converting enzyme (ACE) affects the immune response and to formulate an approach for considering the effectiveness of inflammation in cardiovascular disease RECENT FINDINGS: While it is widely appreciated that the renin-angiotensin system affects aspects of inflammation through the action of angiotensin II, new studies reveal a previously unknown role of ACE in myeloid cell biology. This was apparent from analysis of two mouse lines genetically modified to overexpress ACE in monocytes/macrophages or neutrophils. Cells overexpressing ACE demonstrated an increased immune response. For example, mice with increased macrophage ACE expression have increased resistance to melanoma, methicillin-resistant Staphylococcus aureus, a mouse model of Alzheimer's disease, and ApoE-knockout-induced atherosclerosis. These data indicate the profound effect of increasing myeloid cell function. Further, they suggest that an appropriate way to evaluate inflammation in both acute and chronic diseases is to ask whether the inflammatory infiltrate is sufficient to eliminate the immune challenge. The expression of ACE by myeloid cells induces a heightened immune response by these cells. The overexpression of ACE is associated with immune function beyond that possible by wild type (WT) myeloid cells. A heightened immune response effectively resolves disease in a variety of acute and chronic models of disease including models of Alzheimer's disease and atherosclerosis.


Assuntos
Hipertensão , Inflamação , Staphylococcus aureus Resistente à Meticilina , Peptidil Dipeptidase A , Animais , Doença Crônica , Humanos , Camundongos , Células Mieloides , Peptidil Dipeptidase A/metabolismo
9.
Cell Mol Biol Lett ; 25: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508938

RESUMO

Angiotensin-converting enzyme (ACE), a dicarboxypeptidase, plays a major role in the regulation of blood pressure by cleaving angiotensin I into angiotensin II (Ang II), a potent vasoconstrictor. Because of its wide substrate specificity and tissue distribution, ACE affects many diverse biological processes. In inflammatory diseases, including granuloma, atherosclerosis, chronic kidney disease and bacterial infection, ACE expression gets upregulated in immune cells, especially in myeloid cells. With increasing evidences connecting ACE functions to the pathogenesis of these acquired diseases, it is suggested that ACE plays a vital role in immune functions. Recent studies with mouse models of bacterial infection and tumor suggest that ACE plays an important role in the immune responses of myeloid cells. Inhibition of ACE suppresses neutrophil immune response to bacterial infection. In contrast, ACE overexpression in myeloid cells strongly induced bacterial and tumor resistance in mice. A detailed biochemical understanding of how ACE activates myeloid cells and which ACE peptide(s) (substrate or product) mediate these effects could lead to the development of novel therapies for boosting immunity against a variety of stimuli, including bacterial infection and tumor.


Assuntos
Hematopoese/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Peptidil Dipeptidase A/fisiologia , Imunidade Adaptativa , Animais , Infecções Bacterianas/imunologia , Humanos , Camundongos , Neoplasias/imunologia , Peptidil Dipeptidase A/imunologia
10.
Biochem Biophys Res Commun ; 520(3): 573-579, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31615657

RESUMO

BACKGROUND: Macrophages are ubiquitous in all stages of atherosclerosis, exerting tremendous impact on lesion progression and plaque stability. Because macrophages in atherosclerotic plaques express angiotensin-converting enzyme (ACE), current dogma posits that local myeloid-mediated effects worsen the disease. In contrast, we previously reported that myeloid ACE overexpression augments macrophage resistance to various immune challenges, including tumors, bacterial infection and Alzheimer's plaque deposition. Here, we sought to assess the impact of myeloid ACE on atherosclerosis. METHODS: A mouse model in which ACE is overexpressed in myelomonocytic lineage cells, called ACE10, was generated and sequentially crossed with ApoE-deficient mice to create ACE10/10ApoE-/- (ACE10/ApoE). Control mice were ACEWT/WTApoE-/- (WT/ApoE). Atherosclerosis was induced using an atherogenic diet alone, or in combination with unilateral nephrectomy plus deoxycorticosterone acetate (DOCA) salt for eight weeks. RESULTS: With an atherogenic diet alone or in combination with DOCA, the ACE10/ApoE mice showed significantly less atherosclerotic plaques compared to their WT/ApoE counterparts (p < 0.01). When recipient ApoE-/- mice were reconstituted with ACE10/10 bone marrow, these mice showed significantly reduced lesion areas compared to recipients reconstituted with wild type bone marrow. Furthermore, transfer of ACE-deficient bone marrow had no impact on lesion area. CONCLUSION: Our data indicate that while myeloid ACE may not be required for atherosclerosis, enhanced ACE expression paradoxically reduced disease progression.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Células Mieloides/enzimologia , Peptidil Dipeptidase A/metabolismo , Animais , Aterosclerose/genética , Pressão Sanguínea , Transplante de Medula Óssea , Linhagem da Célula/genética , Colesterol/sangue , Dieta Aterogênica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides/patologia , Peptidil Dipeptidase A/genética , Regulação para Cima
11.
Blood ; 130(3): 328-339, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28515091

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1ß release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.


Assuntos
Resistência à Doença/genética , Imunidade Inata , Neutrófilos/imunologia , Peptidil Dipeptidase A/imunologia , Infecções Estafilocócicas/imunologia , Superóxidos/imunologia , Animais , Membrana Celular , Armadilhas Extracelulares/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Klebsiella pneumoniae , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/transplante , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Pseudomonas aeruginosa , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/imunologia , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Superóxidos/metabolismo
12.
J Am Soc Nephrol ; 29(10): 2546-2561, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185469

RESUMO

BACKGROUND: Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACE's two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS: To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS: In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1ß, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS: These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/deficiência , Substituição de Aminoácidos , Angiotensina II/metabolismo , Animais , Domínio Catalítico/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Canais Epiteliais de Sódio/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Natriurese/genética , Natriurese/fisiologia , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/metabolismo , Peptidil Dipeptidase A/genética , Domínios Proteicos , Sistema Renina-Angiotensina/fisiologia
13.
Am J Physiol Renal Physiol ; 314(4): F531-F542, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187372

RESUMO

Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.


Assuntos
Albuminúria/enzimologia , Diabetes Mellitus Experimental/enzimologia , Nefropatias Diabéticas/enzimologia , Túbulos Renais/enzimologia , Peptidil Dipeptidase A/metabolismo , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Células Endoteliais/enzimologia , Taxa de Filtração Glomerular , Glomérulos Renais/enzimologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Knockout , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , RNA Interferente Pequeno/genética , Estreptozocina
14.
Proc Natl Acad Sci U S A ; 112(31): 9769-74, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195795

RESUMO

In sinoatrial node (SAN) cells, electrogenic sodium-calcium exchange (NCX) is the dominant calcium (Ca) efflux mechanism. However, the role of NCX in the generation of SAN automaticity is controversial. To investigate the contribution of NCX to pacemaking in the SAN, we performed optical voltage mapping and high-speed 2D laser scanning confocal microscopy (LSCM) of Ca dynamics in an ex vivo intact SAN/atrial tissue preparation from atrial-specific NCX knockout (KO) mice. These mice lack P waves on electrocardiograms, and isolated NCX KO SAN cells are quiescent. Voltage mapping revealed disorganized and arrhythmic depolarizations within the NCX KO SAN that failed to propagate into the atria. LSCM revealed intermittent bursts of Ca transients. Bursts were accompanied by rising diastolic Ca, culminating in long pauses dominated by Ca waves. The L-type Ca channel agonist BayK8644 reduced the rate of Ca transients and inhibited burst generation in the NCX KO SAN whereas the Ca buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA AM) did the opposite. These results suggest that cellular Ca accumulation hinders spontaneous depolarization in the NCX KO SAN, possibly by inhibiting L-type Ca currents. The funny current (If) blocker ivabradine also suppressed NCX KO SAN automaticity. We conclude that pacemaker activity is present in the NCX KO SAN, generated by a mechanism that depends upon If. However, the absence of NCX-mediated depolarization in combination with impaired Ca efflux results in intermittent bursts of pacemaker activity, reminiscent of human sinus node dysfunction and "tachy-brady" syndrome.


Assuntos
Potenciais de Ação , Relógios Biológicos , Nó Sinoatrial/fisiologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Conexinas/metabolismo , Diástole , Estimulação Elétrica , Feminino , Fibrose , Espaço Intracelular/metabolismo , Masculino , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo
15.
Kidney Int ; 91(4): 856-867, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27988209

RESUMO

Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.


Assuntos
Pressão Arterial , Hipertensão/enzimologia , Túbulos Renais/enzimologia , NG-Nitroarginina Metil Éster , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina , Cloreto de Sódio na Dieta , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Túbulos Renais/fisiopatologia , Fígado/enzimologia , Camundongos Transgênicos , Natriurese , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Eliminação Renal , Sistema Renina-Angiotensina/genética , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo
16.
Circ Res ; 117(10): 858-69, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26294657

RESUMO

RATIONALE: Chronic inflammation is a major contributor to the progressive pathology of hypertension, and T-cell activation is required for the genesis of hypertension. However, the precise role of myeloid cells in this process is unclear. OBJECTIVE: To characterize and understand the role of peripheral myeloid cells in the development of hypertension. METHODS AND RESULTS: We examined myeloid cells in the periphery of hypertensive mice and found that increased numbers of CD11b(+)Gr1(+) myeloid cells in blood and the spleen are a characteristic of 3 murine models of experimental hypertension (angiotensin II, L-NG-nitroarginine methyl ester, and high salt). These cells express surface markers and transcription factors associated with immaturity and immunosuppression. Also, they produce hydrogen peroxide to suppress T-cell activation. These are characteristics of myeloid-derived suppressor cells (MDSCs). Depletion of hypertensive MDSCs increased blood pressure and renal inflammation. In contrast, adoptive transfer of wild-type MDSCs to hypertensive mice reduced blood pressure, whereas the transfer of nicotinamide adenine dinucleotide phosphate oxidase 2-deficient MDSCs did not. CONCLUSION: The accumulation of MDSCs is a characteristic of experimental models of hypertension. MDSCs limit inflammation and the increase of blood pressure through the production of hydrogen peroxide.


Assuntos
Pressão Sanguínea , Hipertensão/imunologia , Células Mieloides/imunologia , Nefrite/imunologia , Transferência Adotiva , Angiotensina II , Animais , Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/transplante , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NG-Nitroarginina Metil Éster , Nefrite/metabolismo , Nefrite/fisiopatologia , Nefrite/prevenção & controle , Transdução de Sinais , Sódio na Dieta , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
17.
Pharmacol Rev ; 65(1): 1-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23257181

RESUMO

Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.


Assuntos
Peptidil Dipeptidase A/fisiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , História do Século XX , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/história , Polimorfismo Genético , Estrutura Terciária de Proteína , Renina/fisiologia
18.
J Am Soc Nephrol ; 25(12): 2752-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25012170

RESUMO

The kidney is an important source of angiotensin-converting enzyme (ACE) in many species, including humans. However, the specific effects of local ACE on renal function and, by extension, BP control are not completely understood. We previously showed that mice lacking renal ACE, are resistant to the hypertension induced by angiotensin II infusion. Here, we examined the responses of these mice to the low-systemic angiotensin II hypertensive model of nitric oxide synthesis inhibition with L-NAME. In contrast to wild-type mice, mice without renal ACE did not develop hypertension, had lower renal angiotensin II levels, and enhanced natriuresis in response to L-NAME. During L-NAME treatment, the absence of renal ACE was associated with blunted GFR responses; greater reductions in abundance of proximal tubule Na(+)/H(+) exchanger 3, Na(+)/Pi co-transporter 2, phosphorylated Na(+)/K(+)/Cl(-) cotransporter, and phosphorylated Na(+)/Cl(-) cotransporter; and greater reductions in abundance and processing of the γ isoform of the epithelial Na(+) channel. In summary, the presence of ACE in renal tissue facilitates angiotensin II accumulation, GFR reductions, and changes in the expression levels and post-translational modification of sodium transporters that are obligatory for sodium retention and hypertension in response to nitric oxide synthesis inhibition.


Assuntos
Hipertensão/metabolismo , Rim/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Peptidil Dipeptidase A/fisiologia , Angiotensina II/metabolismo , Animais , Pressão Sanguínea , Taxa de Filtração Glomerular , Hipertensão/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/química , Natriurese , Óxido Nítrico/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Renina/sangue , Simportadores/metabolismo
19.
Biol Chem ; 395(10): 1173-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24633750

RESUMO

Angiotensin-converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis, and several aspects of the immune response. ACE 10/10 mice overexpress ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization toward a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with melanoma, bacterial infection, or Alzheimer disease. As shown in ACE 10/10 mice, enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges.


Assuntos
Células Precursoras de Granulócitos/enzimologia , Células Precursoras de Granulócitos/imunologia , Imunidade Celular/genética , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Animais , Camundongos , Camundongos Knockout
20.
Curr Opin Nephrol Hypertens ; 23(2): 106-12, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24378774

RESUMO

PURPOSE OF REVIEW: This review presents novel findings regarding the renal angiotensin-converting enzyme (ACE) and its role in blood pressure (BP) control. RECENT FINDINGS: The textbook flow diagram of the renin-angiotensin system (RAS) shows the pulmonary endothelium as the main source of the ACE that converts angiotensin I to angiotensin II. However, ACE is made in large quantities by the kidneys, which raises the important question of what precisely is the function of renal ACE? Recent studies in gene-targeted mice indicates that renal ACE plays a dominant role in regulating the response of the kidney to experimental hypertension. In particular, renal ACE and locally generated angiotensin II affect the activity of several key sodium transporters and the induction of sodium and water retention resulting in the elevation of BP. SUMMARY: New experimental data link the renal ACE/angiotensin II pathway and the local regulation of sodium transport as key elements in the development of hypertension.


Assuntos
Pressão Sanguínea , Hipertensão/enzimologia , Rim/enzimologia , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Animais , Água Corporal/metabolismo , Humanos , Hipertensão/fisiopatologia , Rim/fisiopatologia , Transdução de Sinais , Sódio/metabolismo , Equilíbrio Hidroeletrolítico , Desequilíbrio Hidroeletrolítico/enzimologia , Desequilíbrio Hidroeletrolítico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA