Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroendocrinology ; 111(6): 568-579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32512568

RESUMO

Dopamine receptor type 2 (DRD2) agonists are the first-choice treatment for prolactin-secreting pituitary tumors but are poorly effective in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). DRD2 reduces AKT phosphorylation in lactotrophs, but no data are available in NF-PitNETs. DRD2 effects on AKT are mediated by a ß-arrestin 2-dependent mechanism in mouse striatum. The aim of this study was to investigate DRD2 effects on AKT phosphorylation and cell proliferation in human primary cultured NF-PitNET cells and in rat tumoral lactotroph cells MMQ, and to test ß-arrestin 2 involvement. We found that the DRD2 agonist BIM53097 induced a reduction of the p-AKT/total-AKT ratio in MMQ (-32.8 ± 17.6%, p < 0.001 vs. basal) and in a subset (n = 15/41, 36.6%) of NF-PitNETs (subgroup 1). In the remaining NF-PitNETs (subgroup 2), BIM53097 induced an increase in p-AKT. The ability of BIM53097 to reduce p-AKT correlated with its antimitotic effect, since the majority of subgroup 1 NF-PitNETs was responsive to BIM53097, and nearly all subgroup 2 NF-PitNETs were resistant. ß-Arrestin 2 was expressed in MMQ and in 80% of subgroup 1 NF-PitNETs, whereas it was undetectable in 77% of subgroup 2 NF-PitNETs. In MMQ, ß-arrestin 2 silencing prevented DRD2 inhibitory effects on p-AKT and cell proliferation. Accordingly, ß-arrestin 2 transfection in subgroup 2 NF-PitNETs conferred to BIM53097 the ability to inhibit both p-AKT and cell growth. In conclusion, we demonstrated that ß-arrestin 2 is required for DRD2 inhibitory effects on AKT phosphorylation and cell proliferation in MMQ and NF-PitNETs, paving the way for a potential role of ß-arrestin 2 as a biomarker predicting NF-PitNETs' responsiveness to treatment with dopamine agonists.


Assuntos
Neoplasias Hipofisárias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D2/metabolismo , beta-Arrestina 2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Cultivadas , Agonistas de Dopamina/farmacologia , Humanos , Fosforilação/fisiologia , Ratos , Receptores de Dopamina D2/agonistas
2.
Neuroendocrinology ; 110(7-8): 642-652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31574507

RESUMO

The high expression of somatostatin receptor 2 (SST2) in growth hormone (GH)-secreting tumors represents the rationale for the clinical use of somatostatin analogs (SSAs) in acromegaly. Recently, the cytoskeletal protein Filamin A (FLNA) has emerged as key modulator of the responsiveness of GH-secreting pituitary tumors to SSAs by regulating SST2 signaling and expression. The aim of this study was to explore FLNA involvement in SST2 intracellular trafficking in tumor somatotroph cells. By biotinylation assay, we found that FLNA silencing abolished octreotide-mediated SST2 internalization in rat GH3 cell line (28.0 ± 2.7 vs. 4 ± 4.3% SST2 internalization, control versus FLNA small interfering RNAs (siRNA) cells, respectively, p < 0.001) and human GH-secreting primary cultured cells (70.3 ± 21.1 vs. 24 ± 19.2% SST2 internalization, control versus FLNA siRNA cells, respectively, p < 0.05). In addition, confocal imaging revealed impaired SST2 recycling to the plasma membrane in FLNA silenced GH3 cells. Coimmunoprecipitation and immunofluorescence experiments showed that FLNA, as well as ß-arrestin2, is timely dependent recruited to octreotide-stimulated SST2 receptors both in rat and human tumor somatotroph cells. Although FLNA expression knock down did not prevent the formation of ß-arrestin2-SST2 complex in GH3 cells, it significantly impaired efficient SST2 loading into cytosolic vesicles positive for the early endocytic and recycling markers Rab5 and 4, respectively (33.7 ± 8.9% down to 25.9 ± 6.9%, p < 0.05, and 28.4 ± 7.4% down to 17.6 ± 5.7%, p < 0.01, for SST2-Rab5 and SST2-Rab4 colocalization, respectively, in control versus FLNA siRNA cells). Altogether these data support an important role for FLNA in the mediation of octreotide-induced SST2 trafficking in GH-secreting pituitary tumor cells through Rab5 and 4 sorting endosomes.


Assuntos
Adenoma/metabolismo , Endossomos/fisiologia , Filaminas/fisiologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Receptores de Somatostatina/metabolismo , Adenoma/patologia , Animais , Células Cultivadas , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Humanos , Octreotida/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Somatotrofos/efeitos dos fármacos , Somatotrofos/metabolismo , Somatotrofos/patologia , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
4.
J Cell Sci ; 126(Pt 2): 638-44, 2013 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-23178946

RESUMO

Despite intensive investigation over the past 20 years, the specific role played by individual G(i) protein family members in mediating complex cellular effects is still largely unclear. Therefore, we investigated the role of specific G(i) proteins in mediating somatostatin (SS) effects in somatotroph cells. Because our previous data showed that SS receptor type 5 (SST5) carrying a spontaneous R240W mutation in the third intracellular loop had a similar ability to inhibit intracellular cAMP levels to the wild-type protein but failed to mediate inhibition of growth hormone (GH) release and cell proliferation, we used this model to check specific receptor-G-protein coupling by a bioluminescent resonance energy transfer analysis. In HEK293 cells, wild-type SST5 stimulated the activation of Gα(i1-3) and Gα(oA), B, whereas R240W SST5 maintained the ability to activate Gα(i1-3) and Gα(oB), but failed to activate the splicing variant Gα(oA). To investigate the role of the selective deficit in Gα(oA) coupling, we co-transfected human adenomatous somatotrophs with SST5 and a pertussis toxin (PTX)-resistant Gα(oA) (Gα(oA(PTX-r))) protein. In PTX-treated cells, Gα(oA(PTX-r)) rescued the ability of the selective SST5 analog BIM23206 to inhibit extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation, GH secretion and intracellular cAMP levels. Moreover, we demonstrated that silencing of Gα(oA) completely abolished SST5-mediated inhibitory effects on GH secretion and ERK1/2 phosphorylation, but not on cAMP levels. In conclusion, by analysing the coupling specificity of human SST5 to individual Gα(i) and Gα(o) subunits, we identified a crucial role for Gα(oA) signalling in human pituitary cells.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipófise/metabolismo , Receptores de Somatostatina/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Fosforilação , Hipófise/citologia , Receptores de Somatostatina/genética , Transdução de Sinais , Transfecção
5.
Mol Cell Endocrinol ; 524: 111159, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428965

RESUMO

Somatostatin receptor type 5 (SST5) represents the main pharmacological target in the treatment of adrenocorticotroph hormone (ACTH)-secreting tumors. However, molecular predictors of responsiveness to pasireotide require further investigation. The cytoskeleton protein filamin A (FLNA) modulates the responsiveness to somatostatin analogs (SSA) treatment in other types of pituitary tumors by regulating somatostatin receptor type 2 (SST2)/dopamine receptor type 2 (DRD2) expression and activity. Here, we aimed to test the involvement of FLNA in the modulation of SST5 response to SSA in human and murine tumor corticotrophs. Western blot analysis of human corticotropinomas showed that FLNA and SST5 correlate. Both in human primary cultures and AtT-20 cells, FLNA genetic silencing caused a decrease of receptor expression level. Moreover, pasireotide-mediated SST5 downregulation observed in AtT-20 control cells was no further detected in FLNA silenced cells. In AtT-20 cells, in situ PLA experiments revealed an increased number of SST5-FLNA complexes following pasireotide incubation. Finally, FLNA knock down abolished pasireotide-induced SST5 actions on hormone secretion, cell proliferation and apoptosis. In conclusion, FLNA is implicated in SST5 expression modulation and signaling.


Assuntos
Corticotrofos/metabolismo , Filaminas/metabolismo , Neoplasias Hipofisárias/metabolismo , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Somatostatina/análogos & derivados , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Inativação Gênica , Hormônios/metabolismo , Humanos , Camundongos , Ligação Proteica , Somatostatina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31708878

RESUMO

Although generally benign, pituitary tumors frequently show local invasiveness and resistance to pharmacological therapy. After the demonstration of the existence of pituitary gland stem cells, over the past decade, the presence of a stem cell subpopulation in pituitary tumors has been investigated, analogous to the cancer stem cell model developed for malignant tumors. This review recapitulates the experimental evidence supporting the existence of a population of stem-like cells in pituitary tumors, focusing on their potential role in tumor initiation, progression, recurrence and resistance to pharmacological therapy.

7.
Mol Cell Endocrinol ; 483: 31-38, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611770

RESUMO

Pasireotide has been associated with tumor shrinkage in patients with Cushing's disease subjected to long term treatment. However, to date the implicated molecular mechanisms are poorly elucidated. Here, we tested pasireotide-mediated cytostatic and cytotoxic effects in ACTH-secreting primary tumor cultures and murine corticotroph tumor cell line, AtT-20 cells. We found somatostatin receptor type 5 (SST5) expressed in 17 different ACTH-secreting tumors and SST2 detectable in 15 out of the 17 tissues. Pasireotide caused a slight but significant in vitro inhibition of cell growth in 3 out of 6 ACTH-secreting primary cultures (-12.1 ±â€¯4.3%, P < 0.01 at 10 nM), remarkably reduced phospho-ERK1/2 levels in 5 out of 8 samples (-36.4 ±â€¯20.5%, P < 0.01 at 1 µM) and triggered an increase of caspase 3/7 activity in 2 of 4 tumors (17 ±â€¯3.6%, P < 0.05 at 1 µM). Accordingly, in AtT-20 cells, pasireotide significantly inhibited cell proliferation (-10.5 ±â€¯7.7% at 10 nM, P < 0.05; -13.9 ±â€¯10.9% at 100 nM, P < 0.05; -26.8 ±â€¯8.9% at 1 µM, P < 0.01). Similar antiproliferative actions were exerted by BIM23206 and BIM23120 (SST5&2 selective ligands, respectively), whereas octreotide was effective when used at 1 µM (-13.3 ±â€¯9.1%, P < 0.05). Moreover, a reduction of phospho-ERK1/2 was observed upon pasireotide and BIM23206 treatment (-8.4 ±â€¯28.6%, P < 0.01 and -51.4 ±â€¯15.9%, P < 0.001 at 10 nM, respectively) but not after octreotide and BIM23120 incubation. Finally, pasireotide was able to induce cell apoptosis in AtT-20 cells at lower concentration than octreotide. Altogether these data indicate a downstream implication of SST5-mediated phospho-ERK1/2 inhibition by pasireotide resulting in ACTH-secreting tumor cells proliferation reduction. Moreover, we describe for the first time a pro-apoptotic effect of pasireotide in corticotrophs.


Assuntos
Corticotrofos/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Hipofisárias/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Corticotrofos/efeitos dos fármacos , Corticotrofos/metabolismo , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Somatostatina/farmacologia , Células Tumorais Cultivadas
8.
Endocrinology ; 159(8): 2953-2965, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931263

RESUMO

The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.


Assuntos
Filaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Citoesqueleto de Actina/metabolismo , Adenoma/tratamento farmacológico , Adenoma/genética , Adenoma/metabolismo , Animais , Células CHO , Invaginações Revestidas da Membrana Celular/metabolismo , Cricetulus , Filaminas/ultraestrutura , Adenoma Hipofisário Secretor de Hormônio do Crescimento/tratamento farmacológico , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Transporte Proteico , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/ultraestrutura , Imagem Individual de Molécula
9.
Artigo em Inglês | MEDLINE | ID: mdl-26733942

RESUMO

Pituitary tumors, that origin from excessive proliferation of a specific subtype of pituitary cell, are mostly benign tumors, but may cause significant morbidity in affected patients, including visual and neurologic manifestations from mass-effect, or endocrine syndromes caused by hormone hypersecretion. Dopamine (DA) receptor DRD2 and somatostatin (SS) receptors (SSTRs) represent the main targets of pharmacological treatment of pituitary tumors since they mediate inhibitory effects on both hormone secretion and cell proliferation, and their expression is retained by most of these tumors. Although long-acting DA and SS analogs are currently used in the treatment of prolactin (PRL)- and growth hormone (GH)-secreting pituitary tumors, respectively, clinical practice indicates a great variability in the frequency and entity of favorable responses. The molecular basis of the pharmacological resistance are still poorly understood, and several potential molecular mechanisms have been proposed, including defective expression or genetic alterations of DRD2 and SSTRs, or an impaired signal transduction. Recently, a role for cytoskeleton protein filamin A (FLNA) in DRD2 and SSTRs receptors expression and signaling in PRL- and GH-secreting tumors, respectively, has been demonstrated, first revealing a link between FLNA expression and responsiveness of pituitary tumors to pharmacological therapy. This review provides an overview of the known molecular events involved in SS and DA resistance, focusing on the role played by FLNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA