Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35020916

RESUMO

Fitness landscapes of protein and RNA molecules can be studied experimentally using high-throughput techniques to measure the functional effects of numerous combinations of mutations. The rugged topography of these molecular fitness landscapes is important for understanding and predicting natural and experimental evolution. Mutational effects are also dependent upon environmental conditions, but the effects of environmental changes on fitness landscapes remains poorly understood. Here, we investigate the changes to the fitness landscape of a catalytic RNA molecule while changing a single environmental variable that is critical for RNA structure and function. Using high-throughput sequencing of in vitro selections, we mapped a fitness landscape of the Azoarcus group I ribozyme under eight different concentrations of magnesium ions (1-48 mM MgCl2). The data revealed the magnesium dependence of 16,384 mutational neighbors, and from this, we investigated the magnesium induced changes to the topography of the fitness landscape. The results showed that increasing magnesium concentration improved the relative fitness of sequences at higher mutational distances while also reducing the ruggedness of the mutational trajectories on the landscape. As a result, as magnesium concentration was increased, simulated populations evolved toward higher fitness faster. Curve-fitting of the magnesium dependence of individual ribozymes demonstrated that deep sequencing of in vitro reactions can be used to evaluate the structural stability of thousands of sequences in parallel. Overall, the results highlight how environmental changes that stabilize structures can also alter the ruggedness of fitness landscapes and alter evolutionary processes.


Assuntos
RNA Catalítico , Aptidão Genética , Mutação , RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo
2.
Angew Chem Int Ed Engl ; 60(19): 10775-10783, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325148

RESUMO

Recent demonstrations of RNA-DNA chimeras (RDNA) enabling RNA and DNA replication, coupled with prebiotic co-synthesis of deoxyribo- and ribo-nucleotides, have resurrected the hypothesis of co-emergence of RNA and DNA. As further support, we show that diamidophosphate (DAP) with 2-aminoimidazole (amido)phosphorylates and oligomerizes deoxynucleosides to form DNA-under conditions similar to those of ribonucleosides. The pyrimidine deoxynucleoside 5'-O-amidophosphates are formed in good (≈60 %) yields. Intriguingly, the presence of pyrimidine deoxynucleos(t)ides increased the yields of purine deoxynucleotides (≈20 %). Concomitantly, oligomerization (≈18-31 %) is observed with predominantly 3',5'-phosphodiester DNA linkages, and some (<5 %) pyrophosphates. Combined with previous observations of DAP-mediated chemistries and the constructive role of RDNA chimeras, the results reported here help set the stage for systematic investigation of a systems chemistry approach of RNA-DNA coevolution.


Assuntos
DNA/química , Nucleotidases/síntese química , Estrutura Molecular , Nucleotidases/química , Fosforilação
3.
Angew Chem Int Ed Engl ; 58(24): 8151-8155, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30989779

RESUMO

Phosphorylation of (pre)biotically relevant molecules in aqueous medium has recently been demonstrated using water-soluble diamidophosphate (DAP). Questions arise relating to the prebiotic availability of DAP and other amidophosphosphorus species on the early earth. Herein, we demonstrate that DAP and other amino-derivatives of phosphates/phosphite are generated when Fe3 P (proxy for mineral schreibersite), condensed phosphates, and reduced oxidation state phosphorus compounds, which could have been available on early earth, are exposed to aqueous ammonia solutions. DAP is shown to remain in aqueous solution under conditions where phosphate is precipitated out by divalent metals. These results show that nitrogenated analogues of phosphate and reduced phosphite species can be produced and remain in solution, overcoming the thermodynamic barrier for phosphorylation in water, increasing the possibility that abiotic phosphorylation reactions occurred in aqueous environments on early earth.


Assuntos
Planeta Terra , Fosfatos/química
4.
Nat Chem ; 11(5): 457-462, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936523

RESUMO

Breakthroughs in the study of the origin of life have demonstrated how some of the building blocks essential to biology could have been formed under various primordial scenarios, and could therefore have contributed to the chemical evolution of life. Missing building blocks are then sometimes inferred to be products of primitive biosynthesis, which can stretch the limits of plausibility. Here, we demonstrate the synthesis of 2'-deoxy-2-thiouridine, and subsequently 2'-deoxyadenosine and 2-deoxyribose, under prebiotic conditions. 2'-Deoxy-2-thiouridine is produced by photoreduction of 2,2'-anhydro-2-thiouridine, which is in turn formed by phosphorylation of 2-thiouridine-an intermediate of prebiotic RNA synthesis. 2'-Deoxy-2-thiouridine is an effective deoxyribosylating agent and may have functioned as such in either abiotic or proto-enzyme-catalysed pathways to DNA, as demonstrated by its conversion to 2'-deoxyadenosine by reaction with adenine, and 2-deoxyribose by hydrolysis. An alternative prebiotic phosphorylation of 2-thiouridine leads to the formation of its 5'-phosphate, showing that hypotheses in which 2-thiouridine was a key component of early RNA sequences are within the bounds of synthetic credibility.


Assuntos
Evolução Química , Tiouridina/análogos & derivados , Desoxiadenosinas/síntese química , Modelos Químicos , Oxirredução , Fosforilação , Tiouridina/síntese química , Tiouridina/química , Tiouridina/efeitos da radiação , Raios Ultravioleta
5.
Nat Chem ; 10(2): 212-217, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29359747

RESUMO

Prebiotic phosphorylation of (pre)biological substrates under aqueous conditions is a critical step in the origins of life. Previous investigations have had limited success and/or require unique environments that are incompatible with subsequent generation of the corresponding oligomers or higher-order structures. Here, we demonstrate that diamidophosphate (DAP)-a plausible prebiotic agent produced from trimetaphosphate-efficiently (amido)phosphorylates a wide variety of (pre)biological building blocks (nucleosides/tides, amino acids and lipid precursors) under aqueous (solution/paste) conditions, without the need for a condensing agent. Significantly, higher-order structures (oligonucleotides, peptides and liposomes) are formed under the same phosphorylation reaction conditions. This plausible prebiotic phosphorylation process under similar reaction conditions could enable the systems chemistry of the three classes of (pre)biologically relevant molecules and their oligomers, in a single-pot aqueous environment.


Assuntos
Evolução Química , Origem da Vida , Compostos de Fósforo/química , Compostos de Fósforo/síntese química , Água/química , Fosforilação
6.
Life (Basel) ; 7(3)2017 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-28758921

RESUMO

Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and other forms of reduced phosphorus species) from a prebiotic, synthetic organic and biochemistry perspective. The ease with which such amidophosphates or phosphoramidate derivatives phosphorylate a wide variety of substrates suggests that alternative forms of phosphate could have played a role in overcoming the "phosphorylation in water problem". We submit that serious consideration should be given to the search for primordial sources of nitrogenous versions of phosphate and other versions of phosphorus.

7.
Dalton Trans ; 43(19): 6981-9, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695883

RESUMO

Azide-tagged Cu(I)-NHC reacts in an 'auto-click' process to furnish complexes functionalized by 1,2,3-triazoles bearing diverse substituents. The resulting Cu(I) complexes are amenable to further transmetallation to Au(I). The whole strategy proceeds with mild conditions and constitutes an efficient entry to functionalised metal-NHCs with biorelevant moieties.


Assuntos
Cobre/química , Ouro/química , Compostos Heterocíclicos/química , Linhagem Celular Tumoral , Química Click , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Humanos , Microscopia Confocal , Conformação Molecular , Triazóis/química
8.
Dalton Trans ; 41(22): 6803-12, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22517562

RESUMO

A new strategy was developed for the modification of silver(I) and gold(I) N-heterocyclic carbenes. Azido groups were grafted and used either by copper-catalysed azide-alkyne cycloaddition before metallation or by thermal and "strain-promoted" 1,3-dipolar cycloaddition after metallation to functionalise the metal-NHCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA