Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38964328

RESUMO

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2, providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among orthologous proteases. We identified TMPRSS2 orthologs from five mammalian orders promoting HKU1 S-mediated entry into cells along with key residues governing host receptor usage. Our data show that the TMPRSS2 binding motif is a site of vulnerability to neutralizing antibodies and suggest that HKU1 uses S conformational masking and glycan shielding to balance immune evasion and receptor engagement.

2.
Proc Natl Acad Sci U S A ; 121(16): e2314990121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593070

RESUMO

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Humanos , Animais , Camundongos , Microscopia Crioeletrônica , Glicoproteínas , Internalização do Vírus
3.
Brain Behav Immun ; 114: 287-298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648007

RESUMO

The circadian system is an evolutionarily adaptive system that synchronizes biological and physiological activities within the body to the 24 h oscillations on Earth. At the molecular level, circadian clock proteins are transcriptional factors that regulate the rhythmic expression of genes involved in numerous physiological processes such as sleep, cognition, mood, and immune function. Environmental and genetic disruption of the circadian clock can lead to pathology. For example, global deletion of the circadian clock gene Rev-erbα (RKO) leads to hyperlocomotion, increased anxiety-like behaviors, and cognitive impairments in male mice; however, the mechanisms underlying behavioral changes remain unclear. Here we hypothesized that RKO alters microglia function leading to neuroinflammation and altered mood and cognition, and that microglia depletion can resolve neuroinflammation and restore behavior. We show that microglia depletion (CSF1R inhibitor, PLX5622) in 8-month-old RKO mice ameliorated hyperactivity, memory impairments, and anxiety/risky-like behaviors. RKO mice exhibited striking increases in expression of pro-inflammatory cytokines (e.g., IL-1ß and IL-6). Surprisingly, these increases were only fully reversed by microglia depletion in the male but not female RKO hippocampus. In contrast, male RKO mice showed greater alterations in microglial morphology and phagocytic activity than females. In both sexes, microglia depletion reduced microglial branching and decreased CD68 production without altering astrogliosis. Taken together, we show that male and female RKO mice exhibit unique perturbations to the neuroimmune system, but microglia depletion is effective at rescuing aspects of behavioral changes in both sexes. These results demonstrate that microglia are involved in Rev-erbα-mediated changes in behavior and neuroinflammation.


Assuntos
Disfunção Cognitiva , Microglia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Feminino , Masculino , Camundongos , Ansiedade , Ritmo Circadiano/fisiologia , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
4.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260518

RESUMO

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. Here, we designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2 providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among human type 2 transmembrane serine proteases. We found that human, rat, hamster and camel TMPRSS2 promote HKU1 S-mediated entry into cells and identified key residues governing host receptor usage. Our data show that serum antibodies targeting the HKU1 RBD TMPRSS2 binding-site are key for neutralization and that HKU1 uses conformational masking and glycan shielding to balance immune evasion and receptor engagement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA