Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32165434

RESUMO

Non-shivering thermogenesis can promote negative energy balance and weight loss. In this study, we identified a contextual stimulus that induces rapid and robust thermogenesis in skeletal muscle. Rats exposed to the odor of a natural predator (ferret) showed elevated skeletal muscle temperatures detectable as quickly as 2 min after exposure, reaching maximum thermogenesis of >1.5°C at 10-15 min. Mice exhibited a similar thermogenic response to the same odor. Ferret odor induced a significantly larger and qualitatively different response from that of novel or aversive odors, fox odor or moderate restraint stress. Exposure to predator odor increased energy expenditure, and both the thermogenic and energetic effects persisted when physical activity levels were controlled. Predator odor-induced muscle thermogenesis is subject to associative learning as exposure to a conditioned stimulus provoked a rise in muscle temperature in the absence of the odor. The ability of predator odor to induce thermogenesis is predominantly controlled by sympathetic nervous system activation of ß-adrenergic receptors, as unilateral sympathetic lumbar denervation and a peripherally acting ß-adrenergic antagonist significantly inhibited predator odor-induced muscle thermogenesis. The potential survival value of predator odor-induced changes in muscle physiology is reflected in an enhanced resistance to running fatigue. Lastly, predator odor-induced muscle thermogenesis imparts a meaningful impact on energy expenditure as daily predator odor exposure significantly enhanced weight loss with mild calorie restriction. This evidence signifies contextually provoked, centrally mediated muscle thermogenesis that meaningfully impacts energy balance.


Assuntos
Tecido Adiposo Marrom , Odorantes , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Camundongos , Músculo Esquelético/metabolismo , Ratos , Termogênese
2.
PLoS One ; 10(5): e0127704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023929

RESUMO

By shedding light on variation in time as well as in space, long-term biogeographic studies can help us define organisms' distribution patterns and understand their underlying drivers. Here we examine distributions of Pseudomonas in and around 15 human homes, focusing on the P. putida and P. fluorescens species groups. We describe recovery from 10,941 samples collected during up to 8 visits per home, occurring on average 2.6 times per year. We collected a mean of 141 samples per visit, from sites in most rooms of the house, from the surrounding yards, and from human and pet occupants. We recovered Pseudomonas in 9.7% of samples, with the majority of isolates being from the P. putida and P. fluorescens species groups (approximately 62% and 23% of Pseudomonas samples recovered respectively). Although representatives of both groups were recovered from every season, every house, and every type of environment sampled, recovery was highly variable across houses and samplings. Whereas recovery of P. putida group was higher in summer and fall than in winter and spring, P. fluorescens group isolates were most often recovered in spring. P. putida group recovery from soils was substantially higher than its recovery from all other environment types, while higher P. fluorescens group recovery from soils than from other sites was much less pronounced. Both species groups were recovered from skin and upper respiratory tract samples from healthy humans and pets, although this occurred infrequently. This study indicates that even species that are able to survive under a broad range of conditions can be rare and variable in their distributions in space and in time. For such groups, determining patterns and causes of stochastic and seasonal variability may be more important for understanding the processes driving their biogeography than the identity of the types of environments in which they can be found.


Assuntos
Pseudomonas fluorescens/isolamento & purificação , Pseudomonas putida/isolamento & purificação , Sistema Respiratório/microbiologia , Estações do Ano , Pele/microbiologia , Microbiologia do Solo , Adulto , Animais , Sequência de Bases , Feminino , Habitação , Humanos , Kentucky , Masculino , Dados de Sequência Molecular , Animais de Estimação/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas putida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA