Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Gut ; 71(2): 372-381, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509930

RESUMO

OBJECTIVE: Therapeutic strategies silencing and reducing the hepatitis B virus (HBV) reservoir, the covalently closed circular DNA (cccDNA), have the potential to cure chronic HBV infection. We aimed to investigate the impact of small interferring RNA (siRNA) targeting all HBV transcripts or pegylated interferon-α (peg-IFNα) on the viral regulatory HBx protein and the structural maintenance of chromosome 5/6 complex (SMC5/6), a host factor suppressing cccDNA transcription. In particular, we assessed whether interventions lowering HBV transcripts can achieve and maintain silencing of cccDNA transcription in vivo. DESIGN: HBV-infected human liver chimeric mice were treated with siRNA or peg-IFNα. Virological and host changes were analysed at the end of treatment and during the rebound phase by qualitative PCR, ELISA, immunoblotting and chromatin immunoprecipitation. RNA in situ hybridisation was combined with immunofluorescence to detect SMC6 and HBV RNAs at single cell level. The entry inhibitor myrcludex-B was used during the rebound phase to avoid new infection events. RESULTS: Both siRNA and peg-IFNα strongly reduced all HBV markers, including HBx levels, thus enabling the reappearance of SMC5/6 in hepatocytes that achieved HBV-RNA negativisation and SMC5/6 association with the cccDNA. Only IFN reduced cccDNA loads and enhanced IFN-stimulated genes. However, the antiviral effects did not persist off treatment and SMC5/6 was again degraded. Remarkably, the blockade of viral entry that started at the end of treatment hindered renewed degradation of SMC5/6. CONCLUSION: These results reveal that therapeutics abrogating all HBV transcripts including HBx promote epigenetic suppression of the HBV minichromosome, whereas strategies protecting the human hepatocytes from reinfection are needed to maintain cccDNA silencing.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Animais , Quimera , DNA Circular/metabolismo , Genoma Viral , Hepatite B Crônica/prevenção & controle , Humanos , Camundongos
2.
Emerg Infect Dis ; 28(9): 1765-1769, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905463

RESUMO

Beginning in May 2022, a rising number of monkeypox cases were reported in non-monkeypox-endemic countries in the Northern Hemisphere. We adapted 2 published quantitative PCRs for use as a dual-target monkeypox virus test on widely used automated high-throughput PCR systems. We determined analytic performance by serial dilutions of monkeypox virus reference material, which we quantified by digital PCR. We found the lower limit of detection for the combined assays was 4.795 (95% CI 3.6-8.6) copies/mL. We compared clinical performance against a commercial manual orthopoxvirus research use only PCR kit by using clinical remnant swab samples. Our assay showed 100% positive (n = 11) and 100% negative (n = 56) agreement. Timely and scalable PCR tests are crucial for limiting further spread of monkeypox. The assay we provide streamlines high-throughput molecular testing for monkeypox virus on existing broadly established platforms used for SARS-CoV-2 diagnostic testing.


Assuntos
COVID-19 , Mpox , Humanos , Técnicas de Diagnóstico Molecular , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
3.
Liver Int ; 41(2): 410-419, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32997847

RESUMO

BACKGROUNDS & AIMS: As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM: To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS: Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS: hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION: These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Animais , Vírus da Hepatite B , Vírus Delta da Hepatite/genética , Hepatócitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID
4.
BMC Gastroenterol ; 20(1): 24, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000689

RESUMO

BACKGROUND: Chronic hepatitis delta virus (HDV) infection causes severe liver disease which often leads to cirrhosis and hepatocellular carcinoma (HCC). Aim of this study was to establish the disease severity and prognostic factors for disease outcome by analysing frequencies of clinical events and their correlation with baseline virological and biochemical parameters as well as interferon and nucleos(t)ide analogue treatment choice. METHODS: We studied a single-centre cohort of 49 anti-HDAg-positive patients with HBsAg persistence for at least 6 months. Virological and biochemical parameters, interferon and nucleos(t)ide analogue treatment choice as well as clinical events during follow-up were analysed by retrospective chart review (mean follow-up time 3 years, range 0.25-7.67 years). RESULTS: Severe clinical events occurred in 11/49 hepatitis D patients, including HCC (8/49), death (8/49) or liver transplantation (2/49). HCCs only occurred secondary to liver cirrhosis and their event rates in this cohort of hepatitis D patients did not differ from a matched HBV mono-infected cohort with comparable frequency of liver cirrhosis. A stepwise multivariate logistic regression revealed low platelet count (p = 0. 0290) and older age (p = 0.0337) correlating most strongly with overall clinical events, while serum HDV RNA positivity at baseline did not correlate with any clinical outcome. Interferon-free but not nucleos(t)ide analogue-free patient care correlated with the occurrence of HCC at logistic regression, although only 3/18 interferon-treated patients demonstrated repeatedly negative HDV PCR results post therapy. CONCLUSIONS: Our data indicate that progressive liver disease at baseline plays a major role as predictive factor for overall clinical outcome of hepatitis D patients. In particular, HCC risk may not be underestimated in hepatitis D virus RNA negative hepatitis D patients with advanced liver fibrosis.


Assuntos
Carcinoma Hepatocelular/epidemiologia , Coinfecção/epidemiologia , Hepatite B Crônica/epidemiologia , Hepatite D Crônica/epidemiologia , Cirrose Hepática/epidemiologia , Neoplasias Hepáticas/epidemiologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/virologia , Estudos de Coortes , Coinfecção/complicações , Coinfecção/tratamento farmacológico , Feminino , Alemanha/epidemiologia , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Hepatite D Crônica/complicações , Hepatite D Crônica/tratamento farmacológico , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/isolamento & purificação , Antígenos da Hepatite delta/sangue , Humanos , Interferons/uso terapêutico , Cirrose Hepática/virologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/virologia , Transplante de Fígado , Estudos Longitudinais , Masculino , Morbidade , Nucleosídeos/uso terapêutico , Estudos Retrospectivos
5.
Gut ; 68(1): 150-157, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217749

RESUMO

OBJECTIVE: Hepatitis delta virus (HDV) was shown to persist for weeks in the absence of HBV and for months after liver transplantation, demonstrating the ability of HDV to persevere in quiescent hepatocytes. The aim of the study was to evaluate the impact of cell proliferation on HDV persistence in vitro and in vivo. DESIGN: Genetically labelled human sodium taurocholate cotransporting polypeptide (hNTCP)-transduced human hepatoma(HepG2) cells were infected with HBV/HDV and passaged every 7 days for 100 days in the presence of the entry inhibitor Myrcludex-B. In vivo, cell proliferation was triggered by transplanting primary human hepatocytes (PHHs) isolated from HBV/HDV-infected humanised mice into naïve recipients. Virological parameters were measured by quantitative real time polymerase chain reaction (qRT-PCR). Hepatitis delta antigen (HDAg), hepatitis B core antigen (HBcAg) and cell proliferation were determined by immunofluorescence. RESULTS: Despite 15 in vitro cell passages and block of viral spreading by Myrcludex-B, clonal cell expansion permitted amplification of HDV infection. In vivo, expansion of PHHs isolated from HBV/HDV-infected humanised mice was confirmed 3 days, 2, 4 and 8 weeks after transplantation. While HBV markers rapidly dropped in proliferating PHHs, HDAg-positive hepatocytes were observed among dividing cells at all time points. Notably, HDAg-positive cells appeared in clusters, indicating that HDV was transmitted to daughter cells during liver regeneration even in the absence of de novo infection. CONCLUSION: This study demonstrates that HDV persists during liver regeneration by transmitting HDV RNA to dividing cells even in the absence of HBV coinfection. The strong persistence capacities of HDV may also explain why HDV clearance is difficult to achieve in HBV/HDV chronically infected patients.


Assuntos
Coinfecção/virologia , Hepatite B/virologia , Hepatite D/virologia , Vírus Delta da Hepatite/metabolismo , Regeneração Hepática , Animais , Divisão Celular , Linhagem Celular , Proliferação de Células , Imunofluorescência , Humanos , Camundongos , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
6.
Gut ; 67(3): 542-552, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28428345

RESUMO

OBJECTIVE: The stability of the covalently closed circular DNA (cccDNA) in nuclei of non-dividing hepatocytes represents a key determinant of HBV persistence. Contrarily, studies with animal hepadnaviruses indicated that hepatocyte turnover can reduce cccDNA loads but knowledge on the proliferative capacity of HBV-infected primary human hepatocytes (PHHs) in vivo and the fate of cccDNA in dividing PHHs is still lacking. This study aimed to determine the impact of human hepatocyte division on cccDNA stability in vivo. METHODS: PHH proliferation was triggered by serially transplanting hepatocytes from HBV-infected humanised mice into naïve recipients. Cell proliferation and virological changes were assessed by quantitative PCR, immunofluorescence and RNA in situ hybridisation. Viral integrations were analysed by gel separation and deep sequencing. RESULTS: PHH proliferation strongly reduced all infection markers, including cccDNA (median 2.4 log/PHH). Remarkably, cell division appeared to cause cccDNA dilution among daughter cells and intrahepatic cccDNA loss. Nevertheless, HBV survived in sporadic non-proliferating human hepatocytes, so that virological markers rebounded as hepatocyte expansion relented. This was due to reinfection of quiescent PHHs since treatment with the entry inhibitor myrcludex-B or nucleoside analogues blocked viral spread and intrahepatic cccDNA accumulation. Viral integrations were detected both in donors and recipient mice but did not appear to contribute to antigen production. CONCLUSIONS: We demonstrate that human hepatocyte division even without involvement of cytolytic mechanisms triggers substantial cccDNA loss. This process may be fundamental to resolve self-limiting acute infection and should be considered in future therapeutic interventions along with entry inhibition strategies.


Assuntos
Proliferação de Células , DNA Circular/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B Crônica , Hepatócitos/fisiologia , Animais , Divisão Celular , Quimera , Modelos Animais de Doenças , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Hepatite B Crônica/prevenção & controle , Humanos , Queratina-18/metabolismo , Lamivudina/uso terapêutico , Lipopeptídeos/uso terapêutico , Camundongos , Cultura Primária de Células , Recidiva , Inibidores da Transcriptase Reversa/uso terapêutico , Carga Viral , Integração Viral , Replicação Viral
7.
J Hepatol ; 64(5): 1033-1040, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26805671

RESUMO

BACKGROUND & AIMS: Hepatitis E virus (HEV) is a major cause of acute hepatitis as well as chronic infection in immunocompromised individuals; however, in vivo infection models are limited. The aim of this study was to establish a small animal model to improve our understanding of HEV replication mechanisms and permit the development of effective therapeutics. METHODS: UPA/SCID/beige mice repopulated with primary human hepatocytes were used for infection experiments with HEV genotype (GT) 1 and 3. Virological parameters were determined at the serological and intrahepatic level by real time PCR, immunohistochemistry and RNA in situ hybridization. RESULTS: Establishment of HEV infection was achieved after intravenous injection of stool-derived virions and following co-housing with HEV-infected animals but not via inoculation of serum-derived HEV. GT 1 infection resulted in a rapid rise of viremia and high stable titres in serum, liver, bile and faeces of infected mice for more than 25 weeks. In contrast, viremia in GT 3 infected mice developed more slowly and displayed lower titres in all analysed tissues as compared to GT 1. HEV-infected human hepatocytes could be visualized using HEV ORF2 and ORF3 specific antibodies and HEV RNA in situ hybridization probes. Finally, six-week administration of ribavirin led to a strong reduction of viral replication in the serum and liver of GT 1 infected mice. CONCLUSION: We established an efficient model of HEV infection to test the efficacy of antiviral agents and to exploit mechanisms of HEV replication and interaction with human hepatocytes in vivo.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite E/genética , Hepatite E/tratamento farmacológico , Fígado/virologia , RNA Viral/análise , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hepatite E/virologia , Humanos , Hibridização In Situ , Fígado/patologia , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real
8.
J Hepatol ; 63(2): 346-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25795587

RESUMO

BACKGROUND & AIMS: The limited availability of hepatitis Delta virus (HDV) infection models has hindered studies of interactions between HDV and infected hepatocytes. The aim was to investigate the antiviral state of HDV infected human hepatocytes in the setting of co-infection with hepatitis B virus (HBV) compared to HBV mono-infection using human liver chimeric mice. METHODS: Viral loads, human interferon stimulated genes (hISGs) and cytokines were determined in humanized uPA/SCID/beige (USB) mice by qRT-PCR, ELISA and immunofluorescence. RESULTS: Upon HBV/HDV inoculation, all mice developed viremia, which was accompanied by a significant induction of hISGs (i.e. hISG15, hSTATs, hHLA-E) compared to uninfected mice, while HBV mono-infection led to weaker hISG elevations. In the setting of chronic infection enhancement of innate defense mechanisms was significantly more prominent in HBV/HDV infected mice. Also the induction of human-specific cytokines (hIP10, hTGF-ß, hIFN-ß and hIFN-λ) was detected in HBV/HDV co-infected animals, while levels remained lower or below detection in uninfected and HBV mono-infected mice. Moreover, despite the average increase of hSTAT levels determined in HBV/HDV infected livers, we observed a weaker hSTAT accumulation in nuclei of hepatocytes displaying very high HDAg levels, suggesting that HDAg may in part limit hSTAT signaling. CONCLUSIONS: Establishment of HDV infection provoked a clear enhancement of the antiviral state of the human hepatocytes in chimeric mice. Elevated pre-treatment ISG and interferon levels may directly contribute to inflammation and liver damage, providing a rationale for the more severe course of HDV-associated liver disease. Such antiviral state induction might also contribute to the lower levels of HBV activity frequently found in co-infected hepatocytes.


Assuntos
Coinfecção/imunologia , Vírus da Hepatite B/genética , Hepatite B Crônica/imunologia , Hepatite D Crônica/imunologia , Vírus Delta da Hepatite/genética , Imunidade Inata , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Hepatite D Crônica/complicações , Hepatite D Crônica/virologia , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Citocinas/metabolismo , Carga Viral
9.
Hepatology ; 60(5): 1483-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24711282

RESUMO

UNLABELLED: Chronic hepatitis B virus (HBV) infection has been associated with alterations in lipid metabolism. Moreover, the Na+-taurocholate cotransporting polypeptide (NTCP), responsible for bile acid (BA) uptake into hepatocytes, was identified as the functional cellular receptor mediating HBV entry. The aim of the study was to determine whether HBV alters the liver metabolic profile by employing HBV-infected and uninfected human liver chimeric mice. Humanized urokinase plasminogen activator/severe combined immunodeficiency mice were used to establish chronic HBV infection. Gene expression profiles were determined by real-time polymerase chain reaction using primers specifically recognizing transcripts of either human or murine origin. Liver biopsy samples obtained from HBV-chronic individuals were used to validate changes determined in mice. Besides modest changes in lipid metabolism, HBV-infected mice displayed a significant enhancement of human cholesterol 7α-hydroxylase (human [h]CYP7A1; median 12-fold induction; P<0.0001), the rate-limiting enzyme promoting the conversion of cholesterol to BAs, and of genes involved in transcriptional regulation, biosynthesis, and uptake of cholesterol (human sterol-regulatory element-binding protein 2, human 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and human low-density lipoprotein receptor), compared to uninfected controls. Significant hCYP7A1 induction and reduction of human small heterodimer partner, the corepressor of hCYP7A1 transcription, was also confirmed in liver biopsies from HBV-infected patients. Notably, administration of Myrcludex-B, an entry inhibitor derived from the pre-S1 domain of the HBV envelope, provoked a comparable murine CYP7A1 induction in uninfected mice, thus designating the pre-S1 domain as the viral component triggering such metabolic alterations. CONCLUSION: Binding of HBV to NTCP limits its function, thus promoting compensatory BA synthesis and cholesterol provision. The intimate link determined between HBV and liver metabolism underlines the importance to exploit further metabolic pathways, as well as possible NTCP-related viral-drug interactions.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Hepatócitos/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/metabolismo , Expressão Gênica , Hepatite B/virologia , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Lipopeptídeos , Camundongos SCID , Camundongos Transgênicos , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
J Hepatol ; 60(3): 500-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24398036

RESUMO

BACKGROUND & AIMS: Pegylated interferon-alpha (PegIFNα) remains an attractive treatment option for chronic hepatitis B virus (HBV) infection because it induces higher rates of antigen loss and seroconversion than treatment with polymerase inhibitors. Although early HBsAg decline is recognised as the best predictor of sustained response to IFN-based therapy, it is unclear whether immune cell functions are required to induce significant antigenemia reduction in the first weeks of treatment. Aim of the study was to investigate whether PegIFNα can induce sustained human hepatocyte responsiveness and substantial loss of circulating and intrahepatic viral antigen loads in a system lacking immune cell functions. METHODS: HBV-infected humanized uPA/SCID mice received either PegIFNα, entecavir (ETV), or both agents in combination. Serological and intrahepatic changes were determined by qRT-PCR and immunohistochemistry and compared to untreated mice. RESULTS: After 4 weeks of treatment, median viremia reduction was greater in mice treated with ETV (either with or without PegIFNα) than with PegIFNα. In contrast, levels of circulating HBeAg, HBsAg, and intrahepatic HBcAg were significantly reduced (p = 0.03) only in mice receiving PegIFNα alone or in combination, as compared to mice receiving ETV monotherapy. Progressive antigen reduction was also demonstrated in mice receiving PegIFNα for 12 weeks (HBeAg = Δ1log; HBsAg = Δ1.4log; p < 0.0001). Notably, repeated administrations of the longer-active PegIFNα could breach the impairment of HBV-infected hepatocyte responsiveness and induce sustained enhancement of human interferon stimulated genes (ISG). CONCLUSIONS: The antiviral effects of PegIFNα exerted on the human hepatocytes can induce sustained responsiveness and trigger substantial HBV antigen decline without claiming the involvement of immune cell responses.


Assuntos
Antivirais/administração & dosagem , Antígenos de Superfície da Hepatite B/sangue , Hepatite B Crônica/tratamento farmacológico , Interferon-alfa/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , DNA Viral/sangue , Guanina/administração & dosagem , Guanina/análogos & derivados , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatócitos/virologia , Humanos , Interferon alfa-2 , Camundongos , Proteínas Recombinantes/administração & dosagem
11.
J Hepatol ; 60(3): 538-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24280293

RESUMO

BACKGROUND & AIMS: Clinical studies have shown that hepatitis delta virus (HDV) infection can persist for years and intrahepatic latency of the large delta antigen (HDAg) has been detected following liver transplantation. However, large HDAg arising via RNA-editing is associated with increasing amounts of non-infectious HDV quasi-species. This study investigated whether HDV could persist intrahepatically in the absence of HBV in vivo and whether infectious HDV could subsequently be released following HBV super-infection. METHODS: Humanized mice were infected with HDV particles lacking HBV. To test for rescue of latent HDV infection 3 and 6 weeks HDV mono-infected mice were super-infected with HBV. Viral loads and cell toxicity were determined by qRT-PCR and immunohistochemistry. RESULTS: The presence of HDAg-positive human hepatocytes determined after 2, 3, and 6 weeks of HDV inoculation demonstrated establishment and maintenance of intrahepatic HDV mono-infection. Although intrahepatic amounts of large HDAg and edited HDV RNA forms increased over time in HDV mono-infected livers, HBV super-infection led to prompt viremia development (up to 10(8) HDV RNA and 10(7) HBV-DNA copies/ml) even after 6 weeks of latent mono-infection. Concurrently, the number of HDAg-positive human hepatocytes increased, demonstrating intrahepatic HDV spreading. The infectivity of the rescued HDV virions was verified by serial passage in naive chimeric mice. CONCLUSIONS: HDV mono-infection can persist intrahepatically for at least 6 weeks before being rescued by HBV. Conversion of a latent HDV infection to a productive HBV/HDV co-infection may contribute to HDV persistence even in patients with low HBV replication and in the setting of liver transplantation.


Assuntos
Coinfecção/virologia , Hepatite B/virologia , Hepatite D/virologia , Animais , Sequência de Bases , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Replicação Viral
12.
J Clin Microbiol ; 52(9): 3334-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24989607

RESUMO

Hepatitis D virus (HDV) is a defective RNA virus that requires the surface antigens of hepatitis B virus (HBV) (HBsAg) for viral assembly and replication. Several commercial and in-house techniques have been described for HDV RNA quantification, but the methodologies differ widely, making a comparison of the results between studies difficult. In this study, a full-length genomic RNA standard was developed and used for HDV quantification by two different real-time PCR approaches (fluorescence resonance energy transfer [FRET] and TaqMan probes). Three experiments were performed. First, the stability of the standard was determined by analyzing the effect of thawing and freezing. Second, because of the strong internal base pairing of the HDV genome, which leads to a rod-like structure, the effect of intense thermal shock (95°C for 10 min and immediate cooling to -80°C) was tested to confirm the importance of this treatment in the reverse transcription step. Lastly, to investigate the differences between the DNA and RNA standards, the two types were quantified in parallel with the following results: the full-length genomic RNA standard was stable and reliably mimicked the behavior of HDV-RNA-positive samples, thermal shock enhanced the sensitivity of HDV RNA quantification, and the DNA standard underquantified the HDV RNA standard. These findings indicate the importance of using complete full-length genomic RNA and a strong thermal-shock step for optimal HDV RNA quantification.


Assuntos
Hepatite D/virologia , Vírus Delta da Hepatite/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Manejo de Espécimes/métodos , Carga Viral/métodos , Carga Viral/normas , Hepatite D/diagnóstico , Vírus Delta da Hepatite/genética , Humanos , Sensibilidade e Especificidade , Temperatura
13.
Methods Mol Biol ; 2837: 171-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044084

RESUMO

The hepatitis delta virus (HDV) is a small RNA virus (1700 base pairs), which uses the surface proteins of the hepatitis B virus (HBV) as an envelope. Accurate and reliable quantitative detection of HDV RNA is central for scientific and translational clinical research or diagnostic purposes. However, HDV poses challenges for nucleic acid amplification techniques: (1) the circular genome displays high intramolecular base pairing; (2) high content of cytosine and guanine; and (3) enormous genomic diversity among the eight known HDV genotypes (GTs). Here, we provide step-by-step instructions for (A) a manual workflow to perform a quantitative HDV reverse transcription (RT)-PCR from serum and liver tissue and (B) a quantitative HDV RT-PCR assay with whole process control to be used for serum or plasma samples run on a fully automated system. Both assays target the conserved ribozyme region and demonstrate inclusivity for all eight HDV GTs. The choice of assay depends on the experimental needs and equipment availability. While the former is ideal for scientific research laboratories, the latter provides a useful tool in the field of translational research or diagnostics.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Fígado , RNA Viral , Fluxo de Trabalho , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/isolamento & purificação , Humanos , RNA Viral/genética , Hepatite D/diagnóstico , Hepatite D/virologia , Fígado/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Genótipo
14.
Sci Rep ; 14(1): 3523, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347048

RESUMO

Vancomycin resistant enterococci (VRE) are a leading cause of ICU-acquired bloodstream infections in Europe. The bacterial load in enteral colonization may be associated with a higher probability of transmission. Here, we aimed to establish a quantitative vanA/vanB DNA real-time PCR assay on a high-throughput system. Limits of detection (LOD), linear range and precision were determined using serial bacterial dilutions. LOD was 46.9 digital copies (dcp)/ml for vanA and 60.8 dcp/ml for vanB. The assay showed excellent linearity between 4.7 × 101 and 3.5 × 105 dcp/ml (vanA) and 6.7 × 102 and 6.7 × 105 dcp/ml (vanB). Sensitivity was 100% for vanA and vanB, with high positive predictive value (PPV) for vanA (100%), but lower PPV for vanB (34.6%) likely due to the presence of vanB DNA positive anerobic bacteria in rectal swabs. Using the assay on enriched VRE broth vanB PPV increased to 87.2%. Quantification revealed median 2.0 × 104 dcp/ml in PCR positive but VRE culture negative samples and median 9.1 × 104 dcp/ml in VRE culture positive patients (maximum: 107 dcp/ml). The automated vanA/B_UTC assay can be used for vanA/vanB detection and quantification in different diagnostic settings and may support future clinical studies assessing the impact of bacterial load on risk of infection and transmission.


Assuntos
Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Enterococos Resistentes à Vancomicina/genética , Valor Preditivo dos Testes , Reação em Cadeia da Polimerase em Tempo Real , DNA , DNA Bacteriano/genética , DNA Bacteriano/análise , Proteínas de Bactérias/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Antibacterianos
15.
Microbiol Spectr ; 12(3): e0275623, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38345391

RESUMO

For effective infection control measures for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), a reliable tool for screening and diagnosis is essential. Here, we aimed to establish and validate a multiplex PCR assay on an automated system using a dual-target approach for the detection of CT/NG and differentiation between lymphogranuloma venereum (LGV) and non-LGV from genital and extra-genital specimens. Published primer/probe sets (CT: pmpH, cryptic plasmid; NG: porA, opa) were modified for the cobas 5800/6800/8800. Standards quantified by digital PCR were used to determine linearity and lower limit of detection (LLoD; eSwab, urine). For clinical validation, prospective samples (n = 319) were compared with a CE-marked in vitro diagnostics (CE-IVD) assay. LLoDs ranged from 21.8 to 244 digital copies (dcp)/mL and 10.8 to 277 dcp/mL in swab and urine, respectively. A simple linear regression analysis yielded slopes ranging from -4.338 to -2.834 and Pearson correlation coefficients from 0.956 to 0.994. Inter- and intra-run variability was <0.5 and <1 cycle threshold (ct), respectively. No cross-reactivity was observed (n = 42). Clinical validation showed a sensitivity of 94.74% (95% confidence interval (CI): 87.23%-97.93%) and 95.51% (95% CI: 89.01%-98.24%), a specificity of 99.59% (95% CI: 97.71%-99.98%) and 99.57% (95% CI: 97.58%-99.98%), positive predictive values of 89.91% (estimated prevalence: 3.7%; 95% CI: 80.91%-95.6%) and 88.61% (estimated prevalence: 3.4%; 95% CI: 80.18%-94.34%), and negative predictive values of 99.81% (95% CI: 98.14%-100%) and 99.85% (95% CI: 98.14%-100%) for the detection of CT and NG, respectively. In conclusion, we established a dual-target, internally controlled PCR on an automated system for the detectiwon of CT/NG from genital and extra-genital specimens. Depending on local regulations, the assay can be used as a screening or a confirmatory/typing assay.IMPORTANCEChlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) represent a major global health burden, with the World Health Organization estimating that >128 million and >82 million people, respectively, were newly infected in 2020. For effective infection control measures, a reliable tool for sensitive diagnosis and screening of CT/NG is essential. We established a multiplex PCR assay for the detection of CT/NG and simultaneous discrimination between lymphogranuloma venereum (LGV) and non-LGV strains, which has been validated for genital and extra-genital specimens on a fully automated system. To increase assay sensitivity, a dual-target approach has been chosen for both pathogens. This strategy reduces false-positive results in oropharyngeal swabs due to the detection of commensal N. species that may harbor NG DNA fragments targeted in the PCR due to horizontal gene transmission following previous infection. In sum, the established assay provides a powerful tool for use as either a screening/diagnostic or a typing/confirmatory assay.


Assuntos
Gonorreia , Linfogranuloma Venéreo , Humanos , Linfogranuloma Venéreo/diagnóstico , Neisseria gonorrhoeae/genética , Chlamydia trachomatis/genética , Reação em Cadeia da Polimerase Multiplex , Sorotipagem , Estudos Prospectivos , Gonorreia/diagnóstico , Sensibilidade e Especificidade
16.
J Clin Virol ; 173: 105693, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38820916

RESUMO

BACKGROUND: Viral respiratory Infections pose a health risk, especially to vulnerable patient populations. Effective testing programs can detect and differentiate these infections at an early stage, which is particularly important for high-risk clinical departments. The objective of this study was to develop and validate a multiplex PCR-panel for 16 different respiratory viruses on a fully-automated high-throughput platform. METHODS: Three multiplex-PCR assays were designed to run on the cobas5800/6800/8800 systems, consolidating 16 viral targets: RESP1: SARS-CoV-2, influenza-A/B, RSV; RESP2: hMPV, hBoV, hAdV, rhino-/ENV; RESP3: HPIV-1-4, hCoV-229E, hCoV-NL63, hCoV-OC43, hCoV-HKU1. Analytic performance was evaluated using digital-PCR based standards and international reference material. Clinical performance was determined by comparing results from clinical samples with reference assays. RESULTS: Analytical sensitivity (i.e. lower limit of detection (LoD), 95 % probability of detection) was determined as follows: SARS-CoV-2: 29.3 IU/ml, influenza-A: 179.9 cp/ml, influenza-B: 333.9 cp/ml and RSV: 283.1 cp/ml. LoDs of other pathogens ranged between 9.4 cp/ml (hCoV-NL63) and 21,419 cp/ml (HPIV-2). Linearity was verified over 4-7 log-steps with pooled standard differentials (SD) ranging between 0.18-0.70ct. Inter-/intra-run variability (precision) was assessed for all targets over 3 days. SDs ranged between 0.13-0.74ct. Positive agreement in clinical samples was 99.4 % and 95 % for SARS-CoV-2 and influenza-A respectively. Other targets were in the 80-100 % range. Negative agreement varied between 96.3-100 %. DISCUSSION: Lab-developed tests are a key factor for effective clinical diagnostics. The multiplex panel presented in this study demonstrated high performance and provides an easily scalable high-throughput solution for respiratory virus testing, e.g. for testing in high-risk patient populations.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Infecções Respiratórias , Sensibilidade e Especificidade , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Vírus/isolamento & purificação , Vírus/genética , Vírus/classificação , Viroses/diagnóstico , Viroses/virologia , Automação Laboratorial/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas
17.
JHEP Rep ; 5(4): 100673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36908749

RESUMO

Background & Aims: Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods: PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results: PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions: Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications: Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.

19.
Viruses ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337015

RESUMO

BACKGROUND: The recently emerged SARS-CoV-2 B.1.1.529 lineage and its sublineages (Omicron variant) pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available monoclonal antibody therapies. RT-PCR-based variant tests can be used to screen large sample-sets rapidly and accurately for relevant variants of concern (VOC). The aim of this study was to establish and validate a multiplex assay on the cobas 6800/8800 systems to allow discrimination between the two currently circulating VOCs, Omicron and Delta, in clinical samples. METHODS: Primers and probes were evaluated for multiplex compatibility. Analytic performance was assessed using cell culture supernatant of an Omicron variant isolate and a clinical Delta variant sample, normalized to WHO-Standard. Clinical performance of the multiplex assay was benchmarked against NGS results. RESULTS: In silico testing of all oligos showed no interactions with a high risk of primer-dimer formation or amplification of human DNA/RNA. Over 99.9% of all currently available Omicron variant sequences are a perfect match for at least one of the three Omicron targets included in the multiplex. Analytic sensitivity was determined as 19.0 IU/mL (CI95%: 12.9-132.2 IU/mL) for the A67V + del-HV69-70 target, 193.9 IU/mL (CI95%: 144.7-334.7 IU/mL) for the E484A target, 35.5 IU/mL (CI95%: 23.3-158.0 IU/mL) for the N679K + P681H target and 105.0 IU/mL (CI95%: 80.7-129.3 IU/mL) for the P681R target. All sequence variances were correctly detected in the clinical sample set (225/225 Targets). CONCLUSION: RT-PCR-based variant screening compared to whole genome sequencing is both rapid and reliable in detecting relevant sequence variations in SARS-CoV-2 positive samples to exclude or verify relevant VOCs. This allows short-term decision-making, e.g., for patient treatment or public health measures.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Primers do DNA/genética , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2/genética
20.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807170

RESUMO

The discovery of sodium taurocholate co-transporting polypeptide (NTCP) as a hepatitis B (HBV) and delta virus (HDV) entry receptor has encouraged the development of new animal models of infection. This review provides an overview of the different in vivo models that are currently available to study HDV either in the absence or presence of HBV. By presenting new advances and remaining drawbacks, we will discuss human host factors which, in addition to NTCP, need to be investigated or identified to enable a persistent HDV infection in murine hepatocytes. Detailed knowledge on species-specific factors involved in HDV persistence also shall contribute to the development of therapeutic strategies.


Assuntos
Animais Geneticamente Modificados , Modelos Animais de Doenças , Vírus Delta da Hepatite/fisiologia , Hepatócitos/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Internalização do Vírus , Animais , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA