Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401023, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807442

RESUMO

Flexible optoelectronics is the need of the hour as the market moves toward wearable and conformable devices. Crystalline π-conjugated materials offer high performance as active materials compared to their amorphous counterpart, but they are typically brittle. This poses a significant challenge that needs to be overcome to unfold their potential in optoelectronic devices. Unveiling the molecular packing topology and identifying interaction descriptors that can seamlessly accommodate strain offers essential guiding principles for developing conjugated materials as active components in flexible optoelectronics. The molecular packing and interaction topology of eight crystal systems of dicyano-distyrylbenzene derivatives are investigated. Face-to-face π-stacks in an inclined orientation relative to the bending surface can accommodate expansion and compression with minimal molecular motion from their equilibrium positions. This configuration exhibits good compliance towards mechanical strain, while a similar structure with a criss-cross arrangement capable of distributing applied strain equally in opposite directions enhances the flexibility. Molecular arrangements that cannot reversibly undergo expansion and compression exhibit brittleness. In the isometric CT crystals, the disproportionate strength of the interactions along the bending plane and orthogonal directions makes these materials sustain a moderate bending strain. These results provide an updated explanation for the elastic bending in semiconducting π-conjugated crystals.

2.
Chemphyschem ; : e202400307, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728539

RESUMO

The absorption and emission spectral shapes of a flexible organic probe, the distyrylbenzene (DSB) dye, are simulated accounting for the effect of different environments of increasing complexity, ranging from a homogeneous, low-molecular- weight solvent, to a long-chain alkane, and, eventually, a channel-forming organic matrix. Each embedding is treated explicitly, adopting a mixed quantum-classical approach, the Adiabatic Molecular Dynamics - generalized vertical Hessian (Ad-MD|gVH) model, which allows a direct simulation of the environment-induced constraining effects on the vibronic spectral shapes. In such a theoretical framework, the stiff modes of the dye are described at a quantum level within the harmonic approximation, including Duschinsky mixing effects, while flexible degrees of freedom of the solute (e. g. torsions) and those of the solvent are treated classically by means of molecular dynamics sampling. Such a setup is shown to reproduce the distinct effects exerted by the different environments in varied thermodynamic conditions. Besides allowing for a first-principles rationale on the supramolecular mechanism leading to the experimental spectral features, this result represents the first successful application of the Ad-MD|gVH method to complex embeddings and supports its potential application to other heterogeneous environments, such as for instance, pigment-protein complexes or organic dyes adsorbed into metal-organic frameworks.

3.
Chemphyschem ; : e202400374, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837881

RESUMO

The peripherical protons of the dye molecule hypericin can undergo structural interconversion (tautomerization) between different isomers separated by a low energy barrier with rates that depends sensitively on the interaction with local chemical environment defined by the nature of host material. We investigate the deuterium (D) isotope effect of hypericin tautomerism at the single-molecule level to avoid ensemble averaging in different polymer matrices by a combined spectroscopic and computational approach. In the 'innocent' PMMA matrix only intramolecular isotope effects on the internal conversion channel and tautomerization are observed; while PVA specifically interacts with the probe via H- and D-bonding. This establishes a single molecular picture on intra- and intermolecular nano-environment effects to control chromophore photophysics and -chemistry.

4.
Phys Chem Chem Phys ; 24(10): 6185-6192, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35229090

RESUMO

Until now, surface-deposited stilbenes have been much less studied than other photochromic systems. Here, an asymmetrically substituted styrene incorporating a redox-active ferrocene moiety and a terminal alkyne group has been synthesised to investigate its photoisomerization in solution, and upon the formation of chemisorbed self-assembled monolayers through a carbon-gold bond formation. Charge transport measurements across the monolayers reveal that upon chemical linkage to the gold substrate there is an alteration of the isomerization pathway, which favours the trans to cis conversion, which is not observed in solution. The experimental observations are interpreted based on quantum chemistry calculations.

5.
J Chem Phys ; 156(4): 044102, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105079

RESUMO

State-of-the-art complete active space self-consistent field/complete active space second order perturbation theory (CASPT2) calculations are used to investigate the role of double excitations on the ground state absorption (GSA) and excited state absorption (ESA) spectra of distyrylbenzene, an important prototype medium-sized π-conjugated organic compound for optoelectronics. The multi-reference results are compared with linear and quadratic response time-dependent density functional theory (DFT) results, revealing an incomplete description of the electronic transitions in the latter. Careful selection of the active space and basis set in the CASPT2 approach allows for a reliable description of the GSA and ESA features; cost-effective DFT-based geometries can be utilized without a significant loss of accuracy. Double excitations are shown to play a pivotal role already for higher excited states in the GSA spectrum, however, without a relevant impact on the discernible spectral features. In the ESA, which shows a much more complex electronic situation, the crucial importance of double (and higher) excitations in all relevant electronic transitions, indeed, mandates a multiconfigurational treatment as done in the present benchmark study.

6.
J Chem Phys ; 156(1): 014203, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998354

RESUMO

Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.


Assuntos
Antracenos/química , Perileno/análogos & derivados , Teoria da Densidade Funcional , Perileno/química , Prótons
7.
Angew Chem Int Ed Engl ; 61(15): e202200599, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104020

RESUMO

Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)3 does not luminesce in the solid state when irradiated at 250-400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP.

8.
Angew Chem Int Ed Engl ; 60(42): 22624-22638, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783293

RESUMO

There has been much interest in dual-emission materials in the past few years for materials and life science applications; however, a systematic overview of the underlying processes is so-far missing. We resolve this issue herein by classifying dual-emission (DE) phenomena as relying on one emitter with two emitting states (DE1), two independent emitters (DE2), or two correlated emitters (DE3). Relevant DE mechanisms for materials science are then briefly described together with the electronic and/or geometrical conditions under which they occur. For further reading, references are given that offer detailed insight into the complex mechanistic aspects of the various DE processes or provide overviews on materials families or their applications. By avoiding ambiguities and misinterpretations, this systematic, insightful Review might inspire future targeted designs of DE materials.

9.
J Am Chem Soc ; 142(6): 2835-2843, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31957436

RESUMO

Absorption spectra of cyanine⊕·Br⊖ salts show a remarkable solvent dependence in non/polar solvents, exhibiting narrow, sharp band shapes in dichloromethane but broad features in toluene; this change was attributed to ion pair association, stabilizing an asymmetric dipolar structure, similar to the situation in the crystal (Bouit, P.-A., et al. J. Am. Chem. Soc. 2010, 132, 4328). Our density functional theory (DFT)-based quantum mechanics/molecular mechanics (QM/MM) calculations of the crystals evidence the crucial role of specific asymmetric anion positioning on the lowering of the symmetry. Molecular dynamics (MD) simulations prove the ion pair association in nonpolar solvents. Time-dependent DFT vibronic calculations in toluene show that ion pairing indeed stabilizes an asymmetric dipolar structure in the electronic ground state. This largely broadens the absorption spectrum in very reasonable agreement with experiment, while the principal pattern of vibrational modes is retained. The current findings allow us to establish a unified picture of the symmetry breaking of polymethine dyes in fluid solution.

10.
Chemistry ; 26(72): 17342-17349, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32696530

RESUMO

Several theoretical studies have proposed strategies to generate helical molecular orbitals (Hel-MOs) in [n]cumulenes and oligoynes. While chiral even-[n] cumulenes feature Hel-MOs, odd-[n] cumulenes may also present them if the terminal groups lie in different planes. However, the proposed systems have been either experimentally unfeasible or resulted in opposite pseudo-degenerated Hel-MOs. We hereby demonstrate the introduction of a remarkable energy difference between helical orbitals of opposite twist by fixing the torsion angle between the terminal groups in butadiyne fragments. To experimentally lock the conformation of the terminal groups, we designed and synthesized cyclic architectures by combining acetylenes with chiral spirobifluorenes. The high stability of these systems with distinct helical orbitals allowed their isolation and full characterization. In our view, these results constitute a step further in the development of real systems presenting helical molecular orbitals.


Assuntos
Alcinos , Polienos , Alcinos/química , Modelos Moleculares , Conformação Molecular , Polienos/química
11.
Chemphyschem ; 21(7): 616-624, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31997580

RESUMO

Two polymorphs with distinctly different fluorescence emission (green and yellow; G, Y) emanating from excitonic and excimeric contributions were prepared from solution as well as by using physical vapour transport. Based on crystal structure investigations, the vibrationally-resolved excitonic emission is found to originate from a ß-Sheet arrangement (G), whereas a sandwich herringbone structure is responsible for the excimer emission (Y). The intermolecular interactions and energies were quantified to have a complete picture of the decisive factors that controls the self-assembly. Halogen-bond directed self-assembly was explored to fine-tune the intermolecular interactions through co-crystallization as well as a commercially viable liquid assisted grinding method. A smooth fluorescence shift from G to Y was achieved by co-assembly due to substantial differences in the π orbital overlap in the molecular packing. Our investigation provides a comprehensive understanding of the origin of excitonic and excimeric contributions of emission behaviour in conjunction with the molecular packing and π-π orbital overlap, and might provide a directive towards the engineering of fluorescent functional molecular materials.

12.
Chemphyschem ; 21(16): 1797-1804, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32602989

RESUMO

A combined spectroscopic and TD-DFT case study was performed, to identify a robust method to calculate the complex near UV/Vis absorption spectra of various amino- vs. nitro-substituted 2,4-diphenylquinolines, which vary strongly under neutral and successively acidic conditions. For this, different DFT functionals were tested for geometry optimization and the TD part to calculate the neutral and different protonated species in a fast screening approach, i. e. using single point calculations in an implicit solvent. Offset-corrected M06HF, hitherto only applied to polymers, was identified as a suitable method to reproduce the absorption spectra in a reasonable fashion for all different substitution pattern and all different protonated species at different pH values; moreover, the method properly predicts the energetic ordering of low-lying n-π* and ππ* transitions, which is decisive for the non-/emissive nature of the different compounds. In all, this might provide a valuable tool for computer-aided design of related classes of compounds.

13.
Phys Chem Chem Phys ; 21(40): 22429-22439, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31580353

RESUMO

In the framework of optoelectronic luminescent materials, non-radiative decay mechanisms are relevant to interpret efficiency losses. These radiationless processes are herein studied theoretically for a series of stilbenoid derivatives, including distyrylbenzene (DSB) and cyano-substituted distyrylbenzene (DCS) molecules in vacuo. Given the difficulties of excited-state reaction path determinations, a simplified computational strategy is defined based on the exploration of the potential energy surfaces (PES) along the elongation, twisting, and pyramidalization of the vinyl bonds. For such exploration, density functional theory (DFT), time-dependent (TD)DFT, and complete-active-space self-consistent field/complete-active-space second-order perturbation theory (CASSCF/CASPT2) are combined. The strategy is firstly benchmarked for ethene, styrene, and stilbene; next it is applied to DSB and representative DCS molecules. Two energy descriptors are derived from the approximated PES, the Franck-Condon energy and the energy gap at the elongated, twisted, and pyramidalized structures. These energy descriptors correlate fairly well with the non-radiative decay rates, which validates our computational strategy. Ultimately, this strategy may be applied to predict the luminescence behavior in related compounds.

14.
Chem Rev ; 116(9): 4937-82, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-26959943

RESUMO

Natural anthocyanin pigments/dyes and phenolic copigments/co-dyes form noncovalent complexes, which stabilize and modulate (in particular blue, violet, and red) colors in flowers, berries, and food products derived from them (including wines, jams, purees, and syrups). This noncovalent association and their electronic and optical implications constitute the copigmentation phenomenon. Over the past decade, experimental and theoretical studies have enabled a molecular understanding of copigmentation. This review revisits this phenomenon to provide a comprehensive description of the nature of binding (the dispersion and electrostatic components of π-π stacking, the hydrophobic effect, and possible hydrogen-bonding between pigment and copigment) and of spectral modifications occurring in copigmentation complexes, in which charge transfer plays an important role. Particular attention is paid to applications of copigmentation in food chemistry.


Assuntos
Antocianinas/química , Corantes/química , Fenóis/química , Pigmentos Biológicos/química , Cor , Ligação de Hidrogênio
15.
J Chem Phys ; 147(3): 034903, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734298

RESUMO

A time-dependent density functional theory study is performed to reveal the excited state absorption (ESA) features of distyrylbenzene (DSB), a prototype π-conjugated organic oligomer. Starting with a didactic insight to ESA based on simple molecular orbital and configuration considerations, the performance of various density functional theory functionals is tested to reveal the full vibronic ESA features of DSB at short and long probe delay times.

16.
Angew Chem Int Ed Engl ; 56(51): 16207-16211, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29110380

RESUMO

The highly sensitive optical detection of oxygen including dissolved oxygen (DO) is of great interest in various applications. We devised a novel room-temperature-phosphorescence (RTP)-based oxygen detection platform by constructing core-shell nanoparticles with water-soluble polymethyloxazoline shells and oxygen-permeable polystyrene cores crosslinked with metal-free purely organic phosphors. The resulting nanoparticles show a very high sensitivity for DO with a limit of detection (LOD) of 60 nm and can be readily used for oxygen quantification in aqueous environments as well as the gaseous phase.

17.
Chemistry ; 22(38): 13588-98, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27555050

RESUMO

A set of triads in which o- and m-carborane clusters are bonded to two stilbene units through Ccluster -CH2 bonds was synthesized, and their structures were confirmed by X-ray diffraction. A study on the influence of the o- and m- isomers on the absorption and photoluminescence properties of the stilbene units in solution revealed no charge-transfer contributions in the lowest excited state, as confirmed by (TD)DFT calculations. The presence of one or two B-I groups in m-carborane derivatives does not affect the emission properties of the stilbenes in solution, probably due to the rather large distance between the iodo substituents and the fluorophore. Nevertheless, a significant redshift of the photoluminescence (PL) emission maximum in the solid state (thin films and powder samples) compared to solution was observed; this can be traced back to PL sensitization, most probably due to more densely packed stilbene moieties. Remarkably, the PL absolute quantum yields of powder samples are significantly higher than those in solution, and this was attributed to the restricted environment and the aforementioned sensitization. Thus, the bonding of the carborane clusters to two stilbene units preserves their PL behavior in solution, but produces significant changes in the solid state. Furthermore, iodinated species can be considered to be promising precursors for theranostic agents in which both imaging and therapeutic functions could possibly be combined.

18.
Phys Chem Chem Phys ; 18(24): 16501-8, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27263988

RESUMO

The photophysics (spectral positions, band shapes, fluorescence quantum yields and lifetimes) of a series of fluorinated ladder type quaterphenyls L4P and L4P-Fn (n = 2, 4, 6) depend strongly on the degree and position of fluorine, despite the fact that substitution is not performed in the rings but only in methylene-bridges. This is driven by subtle differences in the molecular orbitals (MOs) participating in the electronic transitions, and in the vibronic pattern of the S0 and S1 electronic states as revealed by (TD)DFT calculations. Solid state spectra for n = 0, 2, 4 are similar to those of solution due to small intermolecular interactions as revealed by combined X-ray and (TD)DFT analysis.

19.
Angew Chem Int Ed Engl ; 55(51): 15915-15919, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27860154

RESUMO

Supramolecular polymers (SPs) have received great attention because of their potential for various practical applications. As part of our search for SPs that are highly fluorescent in aqueous media, we designed a system based on a cucurbit[8]uril (CB[8]) host and a newly designed cyanostilbene guest. Fluorescence quantum yields of ≈0 % in the disassembled monomer state and 91 % in the CB[8]-induced SP state were obtained. The intriguing photophysical properties of the SP are elucidated through detailed experimental and computational analysis, paving the way towards a fascinating class of water-soluble fluorescent SPs.

20.
Angew Chem Int Ed Engl ; 55(1): 203-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26585755

RESUMO

We report on a molecularly tailored 1:1 donor-acceptor (D-A) charge-transfer (CT) cocrystal that manifests strongly red-shifted CT luminescence characteristics, as well as noteworthy reconfigurable self-assembling behaviors. A loosely packed molecular organization is obtained as a consequence of the noncentrosymmetric chemical structure of molecule A1, which gives rise to considerable free volume and weak intermolecular interactions. The stacking features of the CT complex result in an external stimuli-responsive molecular stacking reorganization between the mixed and demixed phases of the D-A pair. Accordingly, high-contrast fluorescence switching (red↔blue) is realized on the basis of the strong alternation of the electronic properties between the mixed and demixed phases. A combination of structural, spectroscopic, and computational studies reveal the underlying mechanism of this stimuli-responsive behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA