RESUMO
OBJECTIVES: This study aimed to demonstrate the effectiveness of spectral photon-counting CT (SPCCT) in quantifying fibrous cap (FC) thickness, FC area, and lipid-rich necrotic core (LRNC) area, in excised carotid atherosclerotic plaques by comparing it with histopathological measurements. METHODS: This is a single-center ex vivo cross-sectional observational study. Excised plaques of 20 patients (71 +/- 6 years; 13 men), obtained from carotid endarterectomy were scanned with SPCCT using standardized acquisition settings (120k Vp/19 µA; 7-18 keV, 18-30 keV, 30-45 keV, 45-75 keV, and 75-118 keV). FC thickness, FC area, and LRNC area were quantified and compared between high-resolution 3D multi-energy CT images and histopathology using the Wilcoxon signed-ranks test and Bland-Altman analysis. Images were interpreted twice by two radiologists separately, blinded to the histopathology; inter- and intra-rater reliability were assessed with the intra-class correlation coefficients (ICC). RESULTS: FC thickness and FC area did not show significant differences between the SPCCT-derived radiological measurements versus the histopathological measurements (p value range 0.15-0.51 for FC thickness and 0.053-0.30 for FC area). For the LRNC area, the p value was statistically non-significant for reader 1 (range 0.36-0.81). The Bland-Altman analysis showed mean difference and 95% confidence interval for FC thickness, FC area, and LRNC area, 0.04 (-0.36 to 0.12) square root mm, -0.18 (-0.34 to -0.02) log10 mm2 and 0.10 (-0.088. to 0.009) log10 mm2 respectively. CONCLUSION: The result demonstrated a viable technique for quantifying FC thickness, FC area, and LRNC area due to the combined effect of high spatial and energy resolution of SPCCT. KEY POINTS: ⢠SPCCT can identify and quantify different components of carotid atherosclerotic plaque in ex vivo study. ⢠Components of atherosclerotic plaque did not show significant differences between the SPCCT-derived radiological measurements versus the histopathological measurements.
Assuntos
Placa Aterosclerótica , Masculino , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Reprodutibilidade dos Testes , Estudos Transversais , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Tomografia Computadorizada por Raios X , FibroseRESUMO
The role of calcium in atherosclerosis is controversial and the relationship between vascular calcification and plaque vulnerability is not fully understood. Although calcifications are present in ≈50% to 60% of carotid plaques, their association with cerebrovascular ischemic events remains unclear. In this review, we summarize current understanding of carotid plaque calcification. We outline the role of calcium in atherosclerotic carotid disease by analyzing laboratory studies and histopathologic studies, as well as imaging findings to understand clinical implications of carotid artery calcifications. Differences in mechanism of calcium deposition express themselves into a wide range of calcification phenotypes in carotid plaques. Some patterns, such as rim calcification, are suggestive of plaques with inflammatory activity with leakage of the vasa vasourm and intraplaque hemorrhage. Other patterns such as dense, nodular calcifications may confer greater mechanical stability to the plaque and reduce the risk of embolization for a given degree of plaque size and luminal stenosis. Various distributions and patterns of carotid plaque calcification, often influenced by the underlying systemic pathological condition, have a different role in affecting plaque stability. Modern imaging techniques afford multiple approaches to assess geometry, pattern of distribution, size, and composition of carotid artery calcifications. Future investigations with these novel technologies will further improve our understanding of carotid artery calcification and will play an important role in understanding and minimizing stroke risk in patients with carotid plaques.
Assuntos
Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Estenose das Carótidas/patologia , Placa Aterosclerótica/patologia , Calcificação Vascular/patologia , Aterosclerose/complicações , Aterosclerose/patologia , Doenças das Artérias Carótidas/complicações , Estenose das Carótidas/complicações , Humanos , Placa Aterosclerótica/complicaçõesRESUMO
BACKGROUND: Development of collateral circulation in coronary artery disease is cardio-protective. A key process in forming new blood vessels is attraction to occluded arteries of monocytes with their subsequent activation as macrophages. In patients from a prospectively recruited post-acute coronary syndromes cohort we investigated the prognostic performance of three products of activated macrophages, soluble vascular endothelial growth factor (VEGF) receptors (sFlt-1 and sKDR) and pterins, alongside genetic variants in VEGF receptor genes, VEGFR-1 and VEGFR-2. METHODS: Baseline levels of sFlt-1 (VEGFR1), sKDR (VEGFR2) and pterins were measured in plasma samples from subgroups (n = 513; 211; 144, respectively) of the Coronary Disease Cohort Study (CDCS, n = 2067). DNA samples from the cohort were genotyped for polymorphisms from the VEGFR-1 gene SNPs (rs748252 n = 2027, rs9513070 n = 2048) and VEGFR-2 gene SNPs (rs2071559 n = 2050, rs2305948 n = 2066, rs1870377 n = 2042). RESULTS: At baseline, levels of sFlt-1 were significantly correlated with age, alcohol consumption, NTproBNP, BNP and other covariates relevant to cardiovascular pathophysiology. Total neopterin levels were associated with alcohol consumption at baseline. 7,8 dihydroneopterin was associated with BMI. The A allele of VEGFR-2 variant rs1870377 was associated with higher plasma sFlt-1 and lower levels of sKDR at baseline. Baseline plasma sFlt-1 was univariately associated with all cause mortality with (p < 0.001) and in a Cox's proportional hazards regression model sFlt-1 and pterins were both associated with mortality independent of established predictors (p < 0.027). CONCLUSIONS: sFlt-1 and pterins may have potential as prognostic biomarkers in acute coronary syndromes patients. Genetic markers from VEGF system genes warrant further investigation as markers of levels of VEGF system components in these patients. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry. ACTRN12605000431628 . 16 September 2005, Retrospectively registered.
Assuntos
Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/genética , Polimorfismo de Nucleotídeo Único , Pterinas/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/mortalidade , Fatores Etários , Idoso , Consumo de Bebidas Alcoólicas/efeitos adversos , Angiografia Coronária , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Fatores de RiscoRESUMO
Background and Aims: The efficiency of N assimilation in response to defoliation is a critical component of plant regrowth and forage production. The aim of this research was to test the effect of the internal C/N balance on NO3- assimilation and to estimate the associated cytokinin signals following defoliation of perennial ryegrass ( Lolium perenne L. 'Grasslands Nui') plants. Methods: Plants, manipulated to have contrasting internal N content and contrasting availability of water soluble carbohydrates (WSCs), were obtained by exposure to either continuous light or short days (8:16 h light-dark), and watered with modified N-free Hoagland medium containing either high (5 m m ) or low (50 µ m ) NO3- as sole N source. Half of the plants were defoliated and the root, sheath and leaf tissue were harvested at 8, 24 and 168 h after cutting. The spatiotemporal changes in WSCs, synthesis of amino acids and associated cytokinin content were recorded after cutting. Key Results: Leaf regrowth following defoliation involved changes in the low- and high-molecular weight WSCs. The extent of the changes and the partitioning of the WSC following defoliation were dependant on the initial WSC levels and the C and N availability. Cytokinin levels varied in the sheath and root as early as 8 h following defoliation and preceded an overall increase in amino acids at 24 h. Subsequently, negative feedback brought the amino acid response back towards pre-defoliation levels within 168 h after cutting, a response that was under control of the C/N ratio. Conclusions: WSC remobilization in the leaf is coordinated with N availability to the root, potentially via a systemic cytokinin signal, leading to efficient N assimilation in the leaf and the sheath tissues and to early leaf regrowth following defoliation.
Assuntos
Carbono/metabolismo , Citocininas/metabolismo , Lolium/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Lolium/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismoRESUMO
What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance.
Assuntos
Exercício Físico/fisiologia , Leucócitos Mononucleares/fisiologia , Adulto , Atletas , Células Cultivadas , Temperatura Baixa , Crioterapia/métodos , Fadiga/metabolismo , Fadiga/fisiopatologia , Humanos , Leucócitos Mononucleares/metabolismo , Neopterina/análogos & derivados , Neopterina/metabolismo , Linfócitos T/metabolismo , Linfócitos T/fisiologiaRESUMO
This study investigated a means of quantifying urinary myoglobin using a novel reverse-phase high-performance liquid chromatography (RP-HPLC) method that is an alternative measure of exercise-induced muscle damage. It also investigated the effect of storage and alkalization on urinary myoglobin stability issues. An RP-HPLC method was validated by precision and repeatability experiments. Myoglobin stability was determined through spiked urine samples stored at various temperatures over an 8-week period using alkalization and dilution in a pH 7.0 buffer. The method was validated with urine collected from mixed martial arts fighters during a competition and training session. The method produced linearity from 5 to 1000 µg/ml (R(2) = 0.997), intra- and inter-assay coefficients of variation from 0.32 to 2.94%, and a lower detection limit of 0.2 µg/ml in the final dilution and 2 µg/ml in the original urine sample. Recovery ranged from 96.4 to 102.5%, myoglobin remained stable at 4 °C when diluted in a pH 7.0 buffer after 20 h, and a significant increase (P < 0.01) and an identifiable peak were observed following a mixed martial arts contest and training session. Storage length and conditions had significant effects (P < 0.05) on stability. The method's simplicity and noninvasive nature means it can be used as an alternative muscle damage assay following exercise and trauma.
Assuntos
Cromatografia Líquida de Alta Pressão , Músculo Esquelético/metabolismo , Mioglobina/análise , Urinálise/métodos , Adulto , Cromatografia de Fase Reversa , Exercício Físico , Humanos , Adulto JovemRESUMO
The adsorption of proteins at solid-liquid interfaces is important in biosensor and biomaterial applications. Marine mussels affix themselves to surfaces using a highly cross-linked, protein-based adhesive containing a high proportion of L-3,4-dihydroxyphenylalanine (DOPA) residues. In this work, the effect of DOPA residues on protein adhesion on stainless steel surfaces was studied using a quartz crystal microbalance with dissipation system. The adsorption of two repetitive peptide motifs, KGYKYYGGSS and KGYKYY, from the mussel Mytilus edulis foot protein 5 on stainless steel was studied before and after chemo-enzymatic modification of tyrosine residues to DOPA using mushroom tyrosinase. Conversion from tyrosine to DOPA, evaluated by HPLC, was in the range 70-99%. DOPA-modified sequences showed fourfold greater adhesion than unmodified M. edulis foot protein 5 motifs.
Assuntos
Bivalves/fisiologia , Di-Hidroxifenilalanina/química , Peptídeos/síntese química , Proteínas/química , Adsorção , Agaricales/enzimologia , Motivos de Aminoácidos , Animais , Bivalves/metabolismo , Cromatografia Líquida de Alta Pressão , Di-Hidroxifenilalanina/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Aço Inoxidável/química , Propriedades de Superfície , Tirosina/metabolismoRESUMO
Rugby union is a sport governed by the impacts of high force and high frequency. Analysis of physiological markers following a game can provide an understanding of the physiological response of an individual and the time course changes in response to recovery. Urine and saliva were collected from 11 elite amateur rugby players 24 h before, immediately after, and at 17, 25, 38, 62 and 86 h post-game. Myoglobin, salivary immunoglobulin A and cortisol were analysed by ELISA, whereas neopterin and total neopterin were analysed by high-performance liquid chromatography. There was a significant post-game increase of all four markers. The increases were cortisol 4-fold, myoglobin 2.85-fold, neopterin 1.75-fold and total neopterin 2.3-fold when corrected with specific gravity. All significant changes occurred post-game only, with markers returning to and remaining at baseline within 17 h. The intensity of the game caused significant changes in key physiological markers of stress. They provide an understanding of the stress experienced during a single game of rugby and the time course changes associated with player recovery. Neopterin provides a new marker of detecting an acute inflammatory response in physical exercise, while specific gravity should be considered for urine volume correction post-exercise.
Assuntos
Biomarcadores/metabolismo , Inflamação/metabolismo , Futebol/fisiologia , Estresse Fisiológico , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Humanos , Hidrocortisona/metabolismo , Imunoglobulina A/metabolismo , Masculino , Músculo Esquelético/lesões , Mioglobinúria/metabolismo , Neopterina/urina , Nova Zelândia , Saliva/imunologia , Saliva/metabolismoRESUMO
Utilizing metal nanoprobes with unique K-edge identities to visualize complementary biological activities simultaneously can provide valuable information about complex biological processes. This study describes the design and preparation of an innovative pair of K-edge metal nanoprobes and demonstrates the feasibility of their simultaneous quantitative detection using spectral photon-counting computed tomography (SPCCT). Glycosaminoglycan (GAG) capped nanoparticles (ca. 15-20 nm) targeting two distinct components of the cartilage tissue, namely, aggrecan (acan) and aggrecanase (acanase) are designed and synthesized. These targeted nanoparticles comprised of praseodymium (Pr) and hafnium (Hf), with well-separated K-edge energies, enable simultaneous and ratiometric imaging of dual biomarkers in cartilage tissue. Following extensive physico-chemical characterization of the ligand-targeted particles, the feasibility of homing dual biomarkers in vitro is demonstrated. The material discrimination and simultaneous quantification of these targeted particles are also achieved and corroborated with inductively coupled plasmon spectroscopy. For the first time, the use of praseodymium is reported as a contrast agent for SPCCT imaging and demonstrates the ability to pair it with hafnium nanoprobes for multicontrast imaging of diseases. Importantly, the potential for ratiometric molecular imaging and tracking of osteoarthritis (OA) progression is shown with SPCCT K-edge based imaging approach.
RESUMO
The abundance of dead macrophages in close proximity to HOCl-modified proteins in advanced atherosclerotic plaques implicates HOCl in the killing of macrophages and the formation of the necrotic core region. The mechanism of HOCl mediated death of macrophages was unknown, so using human monocyte derived macrophages (HMDM) we here have shown that HOCl causes a rapid necrotic cell death characterized by loss of MTT reduction, cellular ATP and cell lysis without caspase-3 activation in HMDM cells. The HOCl causes a rise in cytosolic calcium level via the plasma membrane L- and T-type calcium channels and endoplasmic reticulum RyR channel. Blocking of the calcium channels or the addition of calpain inhibitors prevents the HOCl mediated loss of mitochondrial potential, lysosome failure and HMDM cell death. Blocking MPT-pore formation with cyclosporin A also prevents the loss of mitochondrial membrane potential, lysosomal destabilization and HMDM cell death. Blocking the calcium mitochondrial uniporter with ruthenium red also blocks the loss of mitochondrial potential but only at high concentrations. HOCl appears to cause HMDM cell death through destabilization of cytosolic calcium control resulting in the failure of both the mitochondria and lysosomes.
Assuntos
Ionóforos de Cálcio/farmacologia , Cálcio/metabolismo , Calpaína/metabolismo , Ácido Hipocloroso/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Necrose , Calcimicina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Caspase 3/metabolismo , Ciclosporina/farmacologia , Dantroleno/farmacologia , Inibidores Enzimáticos/farmacologia , Flunarizina/farmacologia , Humanos , Lisossomos/efeitos dos fármacos , Macrófagos/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Relaxantes Musculares Centrais/farmacologia , Nifedipino/farmacologia , Verapamil/farmacologiaRESUMO
A key process in the development of atherosclerotic plaques is the recruitment of monocytes into the artery wall. Using spectral photon-counting computed tomography we examine whether monocyte deposition within the artery wall of ApoE-/- mouse can be detected. Primary mouse monocytes were labelled by incubating them with 15 nm gold nanoparticles coated with 11-mercaptoundecanoic acid The monocyte uptake of the particle was confirmed by electron microscopy of the cells before injection into 6-week-old apolipoprotein E deficient (ApoE-/-) mouse that had been fed with the Western diet for 10 weeks. Four days following injection, the mouse was sacrificed and imaged using a MARS spectral photon counting computed tomography scanner with a spectral range of 7 to 120 KeV with five energy bins. Imaging analysis showed the presence of X-ray dense material within the mouse aortic arch which was consistent with the spectral characteristic of gold rather than calcium. The imaging is interpreted as showing the deposition of gold nanoparticles containing monocytes within the mouse aorta. The results of our study determined that spectral photon-counting computed tomography could provide quantitative information about gold nanoparticles labelled monocytes in voxels of 90 × 90 × 90 µm3. The imaging was consistent with previous micro-CT and electron microscopy of mice using the same nanoparticles. This study demonstrates that spectral photon-counting computed tomography, using a MARS small bore scanner, can detect a fundamental atherogenic process within mouse models of atherogenesis. The present study demonstrates the feasibility of spectral photon-counting computed tomography as an emerging molecular imaging modality to detect atherosclerotic disease.
RESUMO
BACKGROUND AND AIMS: Atherosclerotic plaques are characterized as being vulnerable to rupture based on a series of histologically defined features, including a lipid-rich necrotic core, spotty calcification and ulceration. Existing imaging modalities have limitations in their ability to distinguish between different materials and structural features. We examined whether X-ray spectral photon-counting computer tomography (SPCCT) images were able to distinguish key plaque features in a surgically excised specimen from the carotid artery with comparison to histological images. METHODS: An excised carotid plaque was imaged in the diagnostic X-ray energy range of 30-120 keV using a small-bore SPCCT scanner equipped with a Medipix3RX photon-counting spectral X-ray detector with a cadmium telluride (CdTe) sensor. Material identification and quantification (MIQ) images of the carotid plaque were generated using proprietary MIQ software at 0.09 mm volumetric pixels (voxels). The plaque was sectioned, stained and photographed at high resolution for comparison. RESULTS: A lipid-rich core with spotty calcification was identified in the MIQ images and confirmed by histology. MIQ showed a core region containing lipid, with a mean concentration of 260 mg lipid/ml corresponding to a mean value of -22HU. MIQ showed calcified regions with mean concentration of 41 mg Ca/ml corresponded to a mean value of 123HU. An ulceration of the carotid wall at the bifurcation was identified to be lipid-lined, with a small calcification identified near the breach of the artery wall. CONCLUSIONS: SPCCT derived material identification and quantification images showed hallmarks of vulnerable plaque including a lipid-rich necrotic core, spotty calcifications and ulcerations.
RESUMO
Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation.
Assuntos
Abelhas/fisiologia , Dióxido de Carbono , Ecossistema , Nitrogênio , Néctar de Plantas/química , Fenômenos Fisiológicos Vegetais , Polinização , Aminoácidos/análise , Animais , Cucurbita/fisiologia , Flores/química , Flores/crescimento & desenvolvimento , Flores/fisiologia , Aquecimento Global , Taxa de SobrevidaRESUMO
PURPOSE: To determine the potential of spectral computed tomography (CT) with Medipix3 for quantifying fat, calcium, and iron in soft tissues within small animal models and surgical specimens of diseases such as fatty liver (metabolic syndrome) and unstable atherosclerosis. METHODS: The spectroscopic method was applied to tomographic data acquired using a micro-CT system incorporating a Medipix3 detector array with silicon sensor layer and microfocus x-ray tube operating at 50 kVp. A 10 mm diameter perspex phantom containing a fat surrogate (sunflower oil) and aqueous solutions of ferric nitrate, calcium chloride, and iodine was imaged with multiple energy bins. The authors used the spectroscopic characteristics of the CT number to establish a basis for the decomposition of soft tissue components. The potential of the method of constrained least squares for quantifying different sets of materials was evaluated in terms of information entropy and degrees of freedom, with and without the use of a volume conservation constraint. The measurement performance was evaluated quantitatively using atheroma and mouse equivalent phantoms. Finally the decomposition method was assessed qualitatively using a euthanized mouse and an excised human atherosclerotic plaque. RESULTS: Spectral CT measurements of a phantom containing tissue surrogates confirmed the ability to distinguish these materials by the spectroscopic characteristics of their CT number. The assessment of performance potential in terms of information entropy and degrees of freedom indicated that certain sets of up to three materials could be decomposed by the method of constrained least squares. However, there was insufficient information within the data set to distinguish calcium from iron within soft tissues. The quantification of calcium concentration and fat mass fraction within atheroma and mouse equivalent phantoms by spectral CT correlated well with the nominal values (R(2) = 0.990 and R(2) = 0.985, respectively). In the euthanized mouse and excised human atherosclerotic plaque, regions of calcium and fat were appropriately decomposed according to their spectroscopic characteristics. CONCLUSIONS: Spectral CT, using the Medipix3 detector and silicon sensor layer, can quantify certain sets of up to three materials using the proposed method of constrained least squares. The system has some ability to independently distinguish calcium, fat, and water, and these have been quantified within phantom equivalents of fatty liver and atheroma. In this configuration, spectral CT cannot distinguish iron from calcium within soft tissues.
Assuntos
Tomografia Computadorizada por Raios X/métodos , Tecido Adiposo/diagnóstico por imagem , Animais , Calibragem , Humanos , Fígado/diagnóstico por imagem , Camundongos , Imagens de Fantasmas , Placa Aterosclerótica/diagnóstico por imagemRESUMO
CD36 is the key scavenger receptor driving the formation of cholesterol-loaded foam cells, the principal cellular component of atherosclerotic plaques. CD36 is down regulated by 7,8-dihydroneopterin, a potent superoxide and hypochlorite scavenging antioxidant generated by interferon-γ stimulated macrophages. 7,8-dihydroneopterin downregulates CD36 mRNA and protein levels so inhibiting macrophage foam cell formation in vitro. We examined the mechanism of 7,8-dihydroneopterin downregulation of CD36 by measuring CD36 and PPAR-γ levels by Western blot analysis, in the monocyte-like U937 cells with a range of PPAR-γ stimulants and inhibitors. Lipoxygenase activity was measured by monitoring linoleic acid oxidation at 234 nm for diene formation. Between 100 and 200 µM, 7,8-dihydroneopterin decreased CD36 levels by 50% within 12 h with levels dropping below 25% by 24 h. CD36 levels returned to basal levels after 24 h. Inhibition of protein synthesis by cycloheximide shows 7,8-dihydroneopterin had no effect on CD36 degradation rates. PPAR-γ levels were not altered by the addition of 7,8-dihydroneopterin. MAP Kinase, P38 and NF-κB pathways inhibitors SP600125, PD98059, SB202190 and BAY 11-7082, respectively, did not restore the CD36 levels in the presence of 7,8-dihydroneopterin. The addition of the lipophilic PPAR-γ activators rosiglitazone and azelaoyl-PAF prevented the CD36 downregulation by 7,8-dihydroneopterin. 7,8-dihydroneopterin inhibited soybean lipoxygenase and reduced U937 cell basal levels of cellular lipid oxides as measured by HPLC-TBARS analysis. The data show 7,8-dihydroneopterin down regulates CD36 expression by decreasing the level of lipid oxide stimulation of PPAR-γ promotor activity, potentially through lipoxygenase inhibition.
Assuntos
Antioxidantes , Lipoproteínas LDL , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Regulação para Baixo , Lipoproteínas LDL/metabolismo , Células U937 , Antígenos CD36/genética , Antígenos CD36/metabolismo , Macrófagos , PPAR gama/metabolismo , Lipoxigenases/genética , Lipoxigenases/metabolismoRESUMO
BACKGROUND AND AIMS: Cluster of differentiation 36 (CD36) is a key scavenger receptor in the control of macrophage uptake of oxidised low-density lipoproteins (oxLDL). CD36 expression levels are not down regulated by intracellular cholesterol but are upregulated by oxidised low density lipoprotein (oxLDL) leading to the formation of lipid loaded foam cells, a major constituent of atherosclerotic plaques. We have previous shown that CD36 is down regulated by 7,8-dihydroneopterin, an antioxidant generated by γ-interferon activated macrophages. How CD36 down regulation affects oxLDL induced cytotoxicity, CD36 oxLDL upregulation and foam cell formation is examined using human monocyte like U937 cell line as a model system of human macrophages. METHODS: Low density lipoprotein (LDL) was prepared by ultracentrifugation from human plasma and oxidised in copper chloride. CD36 levels in U937 cells were measured by western blot analysis. and lipid accumulation was measured by oil red-O staining and 7-ketocholesterol accumulation by high performance liquid chromatography. Cell viability was measured by flow cytometry analysis after propidium iodide staining. RESULTS: 7,8-dihydroneopterin concentrations above 100 µM caused a concentration and time dependent decrease in cellular CD36 levels to 20 % of the untreated cells after 24 h. Upregulation of CD36 by oxLDL was inhibited by 7,8-dihydroneopterin treatment. The CD36 down regulation was associated with decrease in foam cell formation but not a reduction on oxLDL cytotoxicity. CONCLUSIONS: 7,8-dihydroneopterin down regulated CD36 in U937 cells, inhibiting foam cell formation but not oxLDL mediated cell death. 7,8-dihydroneopterin may modulate foam cell formation in atherosclerotic plaques.
Assuntos
Antioxidantes/farmacologia , Antígenos CD36/antagonistas & inibidores , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/efeitos adversos , Macrófagos/metabolismo , Neopterina/análogos & derivados , Placa Aterosclerótica/tratamento farmacológico , Diferenciação Celular , Regulação para Baixo , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Neopterina/farmacologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células U937RESUMO
Knee and hip arthroplasty are common surgeries within an aging population. Some data has suggested that knee arthroplasty is more traumatic to the body than hip arthroplasty due to the increased complexity and load bearing nature of the joint. Here, we compare the stress of the two surgeries by measuring urinary neopterin and total neopterin as biomarkers of oxidative stress and inflammation. Urinary neopterin and total neopterin (neopterin + 7,8-dihydroneopterin) levels were analysed in 28 knee and 22 hip arthroplasty patients pre- and post-operatively to determine oxidative stress and inflammation levels. Total neopterin was 31.1% higher with knee arthroplasty (p<0.05). Urinary neopterin was 32.8% higher in the knee arthroplasty group versus hips. The increase in neopterin and total neopterin following a post-surgical decrease in levels was significant in both groups. Levels of neopterin and total neopterin were varied between patients, but all increased following surgery and subsided by day 28. The increased levels of urinary neopterin and total neopterin from knee arthroplasty indicate that knee osteoarthritis and arthroplasty is a more significant trauma to the body than hip osteoarthritis and arthroplasty surgery. This is also shown by faster inflammatory resolution following hip arthroplasty.
Assuntos
Neopterina/análise , Estresse Oxidativo/fisiologia , Estresse Fisiológico/fisiologia , Idoso , Artroplastia de Quadril/métodos , Artroplastia do Joelho/métodos , Biomarcadores/urina , Estudos de Coortes , Feminino , Articulação do Quadril/cirurgia , Humanos , Inflamação/metabolismo , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Neopterina/urina , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/cirurgiaRESUMO
OBJECTIVES: To evaluate pterins as diagnostic biomarkers of exercise-induced stress. DESIGN: Systematic review of the literature. METHODS: MEDLINE, Scopus and Web of Science were searched in March 2019 for relevant literature. We only considered in vivo studies of healthy humans that reported measurement of a pterin(s) in response to exercise or sport with no underlying prior disease or complication. Relevant articles were independently reviewed and resolved by consensus. RESULTS: We included 29 studies with 644 participants. We classified articles by running/hiking, cycling, rugby, mixed martial arts (MMA) or other. Eighty-six percent of studies measured a significant increase in a pterin in response to exercise. Changes in pterin concentrations were within 24h of the exercise-stimulus in 79% of studies and 17% measured a change from baseline greater than 48h post-exercise (49% did not measure or report beyond 48h). Neopterin or total neopterin (neopterin+7,8-dihydroneopterin) were the primary pterin measured (28 studies) and they were equally sensitive to exercise regardless of whether the stimulus was running, cycling, rugby, MMA or other. CONCLUSIONS: Neopterin and total neopterin increase in response to exercise-induced stress. Pterins may have limited capacity for monitoring long-term stress beyond 48h but further research is required.
Assuntos
Exercício Físico , Pterinas/sangue , Pterinas/urina , Estresse Fisiológico , Atletas , Biomarcadores/sangue , Biomarcadores/urina , HumanosRESUMO
7,8-Dihydroneopterin protects cells intracellularly from oxidative stress-induced death, but its mode of transport across the cell membrane is unknown. Nucleosides, such as guanosine, are transported via nucleoside transporters of the equilibrative and concentrative forms. Therefore, the objective of this study was to identify which membrane transporters are responsible for 7,8-dihydroneopterin transport in cells and whether this is necessary for protection against oxidative stress. Monocytic cell lines U937, THP-1 and human monocytes were incubated with varying concentrations of 7,8-dihydroneopterin with or without nucleoside transporter inhibitors nitrobenzylthioinosine (NBMPR; ENT1), dipyridamole (DP; ENT1 and ENT2) or indomethacin (INDO; CNT). Only DP inhibited 7,8-dihydroneopterin uptake in U937 cells, while NBMPR and DP inhibited 7,8-dihydroneopterin uptake in THP-1 cells. All three inhibitors limited 7,8-dihydroneopterin uptake in human monocytes at short time points only. When the cells were incubated with 10 mM of the peroxyl radical generator 2,2'-azobis-2-methyl-propanimidamide, dihydrochloride (AAPH) a 50-80% loss of cell viability was measured. 7,8-dihydroneopterin protected all cell lines against AAPH-induced cell death, which was prevented with DP in U937 cells, NBMPR in THP-1 cells and a combination of all three nucleoside inhibitors in human monocytes. These data indicate 7,8-dihydroneopterin is transported across the cell membrane of monocytic cells via equilibrative and concentrative nucleoside transporters in a cell lineage-dependent manner. The data also indicate protection from peroxyl radical-generated cell death with 7,8-dihydroneopterin is intracellular and facilitated through nucleoside transporters in monocytic cells.