Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(23): 12877-12884, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461358

RESUMO

Understanding risks to biodiversity requires predictions of the spatial distribution of species adapting to changing ecosystems and, to that end, Earth observations integrating field surveys prove essential as they provide key numbers for assessing landscape-wide biodiversity scenarios. Here, we develop, and apply to a relevant case study, a method suited to merge Earth/field observations with spatially explicit stochastic metapopulation models to study the near-term ecological dynamics of target species in complex terrains. Our framework incorporates the use of species distribution models for a reasoned estimation of the initial presence of the target species and accounts for imperfect and incomplete detection of the species presence in the study area. It also uses a metapopulation fitness function derived from Earth observation data subsuming the ecological niche of the target species. This framework is applied to contrast occupancy of two species of carabids (Pterostichus flavofemoratus, Carabus depressus) observed in the context of a large ecological monitoring program carried out within the Gran Paradiso National Park (GPNP, Italy). Results suggest that the proposed framework may indeed exploit the hallmarks of spatially explicit ecological approaches and of remote Earth observations. The model reproduces well the observed in situ data. Moreover, it projects in the near term the two species' presence both in space and in time, highlighting the features of the metapopulation dynamics of colonization and extinction, and their expected trends within verifiable timeframes.

2.
J Theor Biol ; 462: 391-407, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30500599

RESUMO

The Species-Area Relation (SAR), which describes the increase in the number of species S with increasing area A, is under intense scrutiny in contemporary ecology, in particular to probe its reliability in predicting the number of species going extinct as a direct result of habitat loss. Here, we focus on the island SAR, which is measured across a set of disjoint habitat patches, and we argue that the SAR portrays an average trend around which fluctuations are to be expected due to the stochasticity of community dynamics within the patches, external perturbations, and habitat heterogeneity across different patches. This probabilistic interpretation of the SAR, though already implicit in the theory of island biogeography and manifest in the scatter of data points in plots of empirical SAR curves, has not been investigated systematically from the theoretical point of view. Here, we show that the two main contributions to SAR fluctuations, which are due to community dynamics within the patches and to habitat heterogeneity between different patches, can be decoupled and analyzed independently. To investigate the community dynamics contribution to SAR fluctuations, we explore a suite of theoretical models of community dynamics where the number of species S inhabiting a patch emerges from diverse ecological and evolutionary processes, and we compare stationary predictions for the coefficient of variation of S, i.e. the fluctuations of S with respect to the mean. We find that different community dynamics models diverge radically in their predictions. In island biogeography and in neutral frameworks, where fluctuations are only driven by the stochasticity of diversification and extinction events, relative fluctuations decay when the mean increases. Computational evidence suggests that this result is robust in the presence of competition for space or resources. When species compete for finite resources, and mass is introduced as a trait determining species' birth, death and resource consumption rates based on empirical allometric scalings, relative fluctuations do not decay with increasing mean S due to the occasional introduction of new species with large resource demands causing mass extinctions in the community. Given this observation, we also investigate the contribution of external disturbance events to fluctuations of S in neutral community dynamics models and compare this scenario with the community dynamics in undisturbed non-neutral models. Habitat heterogeneity within a single patch, in the context of metapopulation models, causes variability in the number of coexisting species which proves negligible with respect to that caused by the stochasticity of the community dynamics. The second contribution to SAR fluctuations, which is due to habitat heterogeneity among different patches, introduces corrections to the coefficient of variation of S. Most importantly, inter-patches heterogeneity introduces a constant, lower bound on the relative fluctuations of S equal to the coefficient of variation of a habitat variable describing the heterogeneity among patches. Because heterogeneity across patches is inevitably present in natural ecosystems, we expect that the relative fluctuations of S always tend to a constant in the limit of large mean S or large patch area A, with contributions from community dynamics, inter-patches heterogeneity or both. We provide a theoretical framework for modelling these two contributions and we show that both can affect significantly the fluctuations of the SAR.


Assuntos
Ecossistema , Extinção Biológica , Modelos Biológicos , Modelos Teóricos , Animais , Ilhas , Dinâmica Populacional , Probabilidade
3.
PLoS One ; 14(3): e0213775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883574

RESUMO

A longstanding question in ecology concerns the prediction of the fate of mountain species under climate change, where climatic and geomorphic factors but also endogenous species characteristics are jointly expected to control species distributions. A significant step forward would single out reliably landscape effects, given their constraining role and relative ease of theoretical manipulation. Here, we address population dynamics in ecosystems where the substrates for ecological interactions are mountain landscapes subject to climate warming. We use a minimalist model of metapopulation dynamics based on virtual species (i.e. a suitable assemblage of focus species) where dispersal processes interact with the spatial structure of the landscape. Climate warming is subsumed by an upward shift of species habitat altering the metapopulation capacity of the landscape and hence species viability. We find that the landscape structure is a powerful determinant of species survival, owing to the specific role of the predictably evolving connectivity of the various habitats. Range shifts and lags in tracking suitable habitat experienced by virtual species under warming conditions are singled out in different landscapes. The range of parameters is identified for which these virtual species (characterized by comparable viability thus restricting their possible fitnesses and niche widths) prove unable to cope with environmental change. The statistics of the proportion of species bound to survive is identified for each landscape, providing the temporal evolution of species range shifts and the related expected occupation patterns. A baseline dynamic model for predicting species fates in evolving habitats is thus provided.


Assuntos
Mudança Climática , Modelos Biológicos , Ecossistema , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA